Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting
-
摘要: 焊接缺陷产生原因复杂,影响因素众多,基于人工智能的缺陷成因诊断算法成为焊接智能化的发展方向. 将PSO-BP神经网络应用于焊接缺陷成因诊断,利用神经网络的连接学习机制代替传统专家系统的规则推理机制,并对PSO算法进行自适应调整,引入动态权重因子,搭建自适应PSO-BP神经网络模型. 结果表明,与传统PSO-BP神经网络模型相比,改进的PSO-BP神经网络模型训练所需要的迭代次数减少13.1%,诊断结果准确率从93.3%提高至96.7%,精确率从91.3%提高至98.3%,综合能力指标从91.7%提高至96.9%. 改进算法能够明显提升焊接缺陷成因诊断的效率和精度,具有较好的工程应用价值.Abstract: Considering the complex causes and various impact factors for welding defects, diagnosis methods based on artificial intelligence algorithms are regarded as one of the directions for the development of intelligentizing welding. In this study, an improved diagnosis method for welding defect based on PSO-BP neural network is proposed. Connection learning mechanism of neural network is used instead of the rule reasoning mechanism of traditional expert systems. It also makes adaptive adjustments to the PSO algorithm, introduced dynamic weight factors, and builds an adaptive PSO-BP neural network model. Compared with the traditional PSO-BP neural network model, the number of iterations required to train the improved PSO-BP neural network model reduced by 13.1%, the accuracy of diagnostic results increased from 93.3% to 96.7%, the precision increased from 91.3% to 98.3%, and the comprehensive performance index increased from 91.7% to 96.9%. The results show that the improved algorithm can significantly improve the efficiency and accuracy of welding defect diagnosis, and has good engineering application value.
-
Keywords:
- cause of welding defects /
- neural network /
- dynamic weighting /
- adaptive
-
-
表 1 基于MIV的焊接成因诊断输入特征变量灵敏度分析
Table 1 Sensitivity analysis of input characteristic variables for welding cause diagnosis based on MIV
焊接参数 平均影响值
δIV各焊接参数MIV
所占的比例η(%)缺陷种类C 0.637 5 26.042 缺陷相对中心距离l1/mm 0.060 5 2.471 两缺陷最近距离l2/mm 0.029 8 1.217 缺陷长宽比δ −0.207 3 8.468 板厚b/mm 0.051 3 2.096 焊接电流I/A 0.337 2 13.775 焊接电压U/V 0.570 3 23.296 焊接速度v/(mm·s−1) −0.179 7 7.341 送丝速度vs/(m·min−1) 0.139 9 5.715 气体流量Q/(L·min−1) −0.234 5 9.579 表 2 基于不同算法的焊接缺陷成因诊断结果
Table 2 Diagnosis results of welding defects based on different algorithms
神经网络种类 加权平均评价指标 准确率ACC(%) 精确率
P(%)召回率
R(%)综合能力
指标F1(%)基于动态权重的
自适应PSO-BP96.7 98.3 96.7 96.9 传统PSO-BP 93.3 91.3 93.3 91.7 BP 90.0 88.0 90.0 88.6 表 3 测试样本的输入特征
Table 3 Input features of the test samples
样本编号 缺陷种类
C缺陷长宽比
δ焊接电流
I/A焊接电压
U/V焊接速度
v/(mm·s−1)送丝速度
vs/(m·min−1)气体流量
Q/(L·min−1)1 气孔 1.10 171.5 19.2 10.90 9.30 18 2 焊穿 8.81 180.0 20.6 9.33 10.00 20 3 未焊透 7.33 126.0 19.5 6.67 8.00 20 4 焊穿 6.49 143.5 19.6 4.00 8.00 19 5 裂纹 10.45 178.0 19.2 9.67 9.30 19 表 4 缺陷成因真实值及网络输出结果
Table 4 Real value of defect causes and network output results
输出特征 真实值T(%) 网络输出值Po(%) 样本1 样本2 样本3 样本4 样本5 样本1 样本2 样本3 样本4 样本5 非工艺参数原因 0 0 0 0 0 0 0 0 0 0 焊接电流过大 0 0 0 0 100 0 0 0 0 96.61 焊接电流过小 0 0 100 0 0 0 0 96.11 2.58 2.15 焊接电压过大 0 100 0 0 0 0 95.08 0 3.32 0 焊接电压过小 0 0 0 0 0 0 0 0 0 0 焊接速度过大 100 0 0 0 0 99.51 2.75 1.46 0 0 焊接速度过小 0 0 0 100 0 0 0 2.43 94.10 0 送丝速度过大 0 0 0 0 0 0 0 0 0 0 送丝速度过小 0 0 0 0 0 0 0 0 0 0 气体流量过大 0 0 0 0 0 0.38 0 0 0 1.24 气体流量过小 0 0 0 0 0 0.11 2.17 0 0 0 -
[1] 吴叶军, 魏艳红. 智能化焊接CAPP的分析与开发[J]. 焊接学报, 2015, 36(7): 109 − 112. Wu Yejun, Wei Yanhong. Analysis and development of intelligentialized welding CAPP system[J]. Transactions of the China Welding Institution, 2015, 36(7): 109 − 112.
[2] Tsoukalas V D, Kontesis M, Badogiannis E, et al. WELDES: An intelligent defects expert system for aluminum welding process[J]. Wseas Transactions on Information Science & Applications, 2007, 4(2): 339 − 345.
[3] 宋燕利, 余成, 戴定国, 等. 基于BP 和GA 的激光焊接热源模型参数优化[J]. 塑性工程学报, 2017, 24(1): 218 − 222. Song Yanli, Yu Cheng, Dai Dingguo, et al. Parameter optimization of heat source model for laser welding based on BP neural network and genetic algorithm[J]. Journal of Plasticity Engineering, 2017, 24(1): 218 − 222.
[4] 邵晴, 于庆斌, 尹华, 等. 焊接热输入对高速动车组转向架侧梁焊接变形的影响及优化[J]. 焊接学报, 2020, 41(12): 25 − 32,48. doi: 10.12073/j.hjxb.20200216002 Shao Qing, Yu Qingbin, Yin Hua, et al. Effect of welding heat input on welding deformation of bogie side beam of high-speed EMU and optimization[J]. Transactions of the China Welding Institution, 2020, 41(12): 25 − 32,48. doi: 10.12073/j.hjxb.20200216002
[5] Liu J, Xu G C, Ren L, et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 2581 − 2588. doi: 10.1007/s00170-016-9588-y
[6] Li Z K, Zhao X H. BP artificial neural network based wave front correction for sensor-less free space optics communication[J]. Optics Communications, 2017, 385: 219 − 228. doi: 10.1016/j.optcom.2016.10.037
[7] 刘占军, 单宝峰, 贺平. 小波神经网络在铝合金焊接缺陷诊断中的研究[J]. 振动、测试与诊断, 2005, 25(3): 219 − 221. doi: 10.3969/j.issn.1004-6801.2005.03.013 Liu Zhanjun, Shan Baofeng, He Ping. Wavelet neural network application to diagnosing defect of aluminum alloy welding[J]. Journal of Vibration, Measurement & Diagnosis, 2005, 25(3): 219 − 221. doi: 10.3969/j.issn.1004-6801.2005.03.013
[8] 姜洪权, 贺帅, 高建民, 等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报, 2020, 56(8): 235 − 242. doi: 10.3901/JME.2020.08.235 Jiang Hongquan, He Shuai, Gao Jianmin, et al. An improved convolutional neural network for weld defect recognition[J]. Journal of Mechanical Engineering, 2020, 56(8): 235 − 242. doi: 10.3901/JME.2020.08.235
[9] Ravi R, Aaquib R K, Chirag P, et al. Classification and identification of surface defects in friction stir welding: An image processing approach[J]. Journal of Manufacturing Processes, 2016, 22: 237 − 253. doi: 10.1016/j.jmapro.2016.03.009
[10] Bacioiu D, Melton G, Papaelias M, et al. Automated defect classification of aluminium 5083 TIG welding using HDR camera and neural networks[J]. Journal of Manufacturing Processes, 2019, 45: 603 − 613. doi: 10.1016/j.jmapro.2019.07.020
[11] Zhang Z, Jia L M, Qin Y. Modified constriction particle swarm optimization algorithm[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1107 − 1113.
[12] 张爱华, 高佛来, 牛小革, 等. 基于BP神经网络的钢轨闪光对焊接头灰斑面积预测[J]. 焊接学报, 2016, 37(11): 11 − 14. Zhang Aihua, Gao Folai, Niu Xiaoge, et al. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. Transactions of the China Welding Institution, 2016, 37(11): 11 − 14.
[13] Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261 − 271. doi: 10.1109/TPAMI.2007.35
[14] Li J Y, Men C, Qi J F, et al. Impact factor analysis, prediction, and mapping of soil corrosion of carbon steel across China based on MIV-BP artificial neural network and GIS[J]. Journal of Soils and Sediments, 2020, 20(8): 3204 − 3216. doi: 10.1007/s11368-020-02649-5
[15] 刘碧瑶. 基于BP神经网络的住院费用建模研究[D]. 杭州: 浙江大学, 2006. Liu Biyao. Research of establishing hospitalization charge fitting model by using BP neural network[D]. Hangzhou: Zhejiang University, 2006.
[16] Sheela K G, Deepa S N. Review on methods to fix number of hidden neurons in neural networks[J]. Mathematical Problems in Engineering, 2013(6): 425740.
[17] 王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552 − 1561. Wang Dongfeng, Meng Li. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 42(10): 1552 − 1561.
-
期刊类型引用(4)
1. 许峰,杨莉,熊义峰,刘坡,张尧成. 搅拌摩擦加工Al-Pb表面复合材料的微结构和织构. 稀有金属材料与工程. 2021(03): 957-962 . 百度学术
2. 张亚敏,姜永亮. 基于神经网络算法的铝基复合材料搅拌铸造工艺优化. 热加工工艺. 2021(18): 91-94 . 百度学术
3. 张孙艺,周爽,朱绍举,高吉成. 基于FSP技术制备CeO_2颗粒增强铝基复合材料. 机械工程与自动化. 2020(02): 151-152 . 百度学术
4. 杨绍斌,张旭,谢帅. 高质量分数Al_2O_3/Al复合材料的硬度和耐磨性能. 材料保护. 2018(04): 47-50+140 . 百度学术
其他类型引用(2)