高级检索

基于动态权重的自适应PSO-BP神经网络焊接缺陷成因诊断

高昶霖, 宋燕利, 左洪洲, 章诚

高昶霖, 宋燕利, 左洪洲, 章诚. 基于动态权重的自适应PSO-BP神经网络焊接缺陷成因诊断[J]. 焊接学报, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
引用本文: 高昶霖, 宋燕利, 左洪洲, 章诚. 基于动态权重的自适应PSO-BP神经网络焊接缺陷成因诊断[J]. 焊接学报, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001
Citation: GAO Changlin, SONG Yanli, ZUO Hongzhou, ZHANG Cheng. Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(1): 98-106. DOI: 10.12073/j.hjxb.20210515001

基于动态权重的自适应PSO-BP神经网络焊接缺陷成因诊断

基金项目: 湖北省技术创新专项(2019AAA014);湖北省重点研发计划项目(2020BAB143);新能源汽车科学与关键技术学科创新引智基地(B17034);教育部创新团队发展计划资助项目(IRT_17R83)
详细信息
    作者简介:

    高昶霖,硕士研究生;主要研究方向为专家系统、智能制造;Email:506070302@qq.com

    通讯作者:

    宋燕利,博士,教授,博士研究生导师;Email:ylsong@whut.edu.cn.

  • 中图分类号: TG409

Cause diagnosis of welding defects based on adaptive PSO-BP neural network with dynamic weighting

  • 摘要: 焊接缺陷产生原因复杂,影响因素众多,基于人工智能的缺陷成因诊断算法成为焊接智能化的发展方向. 将PSO-BP神经网络应用于焊接缺陷成因诊断,利用神经网络的连接学习机制代替传统专家系统的规则推理机制,并对PSO算法进行自适应调整,引入动态权重因子,搭建自适应PSO-BP神经网络模型. 结果表明,与传统PSO-BP神经网络模型相比,改进的PSO-BP神经网络模型训练所需要的迭代次数减少13.1%,诊断结果准确率从93.3%提高至96.7%,精确率从91.3%提高至98.3%,综合能力指标从91.7%提高至96.9%. 改进算法能够明显提升焊接缺陷成因诊断的效率和精度,具有较好的工程应用价值.
    Abstract: Considering the complex causes and various impact factors for welding defects, diagnosis methods based on artificial intelligence algorithms are regarded as one of the directions for the development of intelligentizing welding. In this study, an improved diagnosis method for welding defect based on PSO-BP neural network is proposed. Connection learning mechanism of neural network is used instead of the rule reasoning mechanism of traditional expert systems. It also makes adaptive adjustments to the PSO algorithm, introduced dynamic weight factors, and builds an adaptive PSO-BP neural network model. Compared with the traditional PSO-BP neural network model, the number of iterations required to train the improved PSO-BP neural network model reduced by 13.1%, the accuracy of diagnostic results increased from 93.3% to 96.7%, the precision increased from 91.3% to 98.3%, and the comprehensive performance index increased from 91.7% to 96.9%. The results show that the improved algorithm can significantly improve the efficiency and accuracy of welding defect diagnosis, and has good engineering application value.
  • 图  1   不同算法流程

    Figure  1.   Different algorithms flow. (a) traditional PSO-BP algorithm; (b) adaptive PSO-BP algorithm based on dynamic weighting

    图  2   焊接缺陷成因智能诊断算法流程

    Figure  2.   Intelligent diagnosis algorithm process for welding defect causes

    图  3   BP神经网络焊接缺陷分析模型

    Figure  3.   BP neural network model for welding defect analysis

    图  4   网格搜索法确定隐藏层神经元个数

    Figure  4.   Grid search to determine the number of neurons in the hidden layer

    图  5   损失函数曲线

    Figure  5.   Loss function curve

    图  6   不同算法神经网络损失函数曲线

    Figure  6.   Loss function curve of neural networks with different algorithms

    图  7   缺陷形成原因混淆矩阵对比

    Figure  7.   Comparison of confusion matrix of defect causes. (a) adaptive PSO-BP algorithm based on dynamic weighting; (b) traditional PSO-BP algorithm; (c) BP neural network

    图  8   参数调整前后焊缝形貌

    Figure  8.   Weld morphology before and after parameter adjustment. (a) before parameter adjustment; (b) after parameter adjustment

    表  1   基于MIV的焊接成因诊断输入特征变量灵敏度分析

    Table  1   Sensitivity analysis of input characteristic variables for welding cause diagnosis based on MIV

    焊接参数平均影响值
    δIV
    各焊接参数MIV
    所占的比例η(%)
    缺陷种类C0.637 526.042
    缺陷相对中心距离l1/mm0.060 52.471
    两缺陷最近距离l2/mm0.029 81.217
    缺陷长宽比δ−0.207 38.468
    板厚b/mm0.051 32.096
    焊接电流I/A0.337 213.775
    焊接电压U/V0.570 323.296
    焊接速度v/(mm·s−1)−0.179 77.341
    送丝速度vs/(m·min−1)0.139 95.715
    气体流量Q/(L·min−1)−0.234 59.579
    下载: 导出CSV

    表  2   基于不同算法的焊接缺陷成因诊断结果

    Table  2   Diagnosis results of welding defects based on different algorithms

    神经网络种类加权平均评价指标
    准确率ACC(%)精确率
    P(%)
    召回率
    R(%)
    综合能力
    指标F1(%)
    基于动态权重的
    自适应PSO-BP
    96.798.396.796.9
    传统PSO-BP93.391.393.391.7
    BP90.088.090.088.6
    下载: 导出CSV

    表  3   测试样本的输入特征

    Table  3   Input features of the test samples

    样本编号缺陷种类
    C
    缺陷长宽比
    δ
    焊接电流
    I/A
    焊接电压
    U/V
    焊接速度
    v/(mm·s−1)
    送丝速度
    vs/(m·min−1)
    气体流量
    Q/(L·min−1)
    1 气孔 1.10 171.5 19.2 10.90 9.30 18
    2 焊穿 8.81 180.0 20.6 9.33 10.00 20
    3 未焊透 7.33 126.0 19.5 6.67 8.00 20
    4 焊穿 6.49 143.5 19.6 4.00 8.00 19
    5 裂纹 10.45 178.0 19.2 9.67 9.30 19
    下载: 导出CSV

    表  4   缺陷成因真实值及网络输出结果

    Table  4   Real value of defect causes and network output results

    输出特征真实值T(%)网络输出值Po(%)
    样本1样本2样本3样本4样本5样本1样本2样本3样本4样本5
    非工艺参数原因 0 0 0 0 0 0 0 0 0 0
    焊接电流过大 0 0 0 0 100 0 0 0 0 96.61
    焊接电流过小 0 0 100 0 0 0 0 96.11 2.58 2.15
    焊接电压过大 0 100 0 0 0 0 95.08 0 3.32 0
    焊接电压过小 0 0 0 0 0 0 0 0 0 0
    焊接速度过大 100 0 0 0 0 99.51 2.75 1.46 0 0
    焊接速度过小 0 0 0 100 0 0 0 2.43 94.10 0
    送丝速度过大 0 0 0 0 0 0 0 0 0 0
    送丝速度过小 0 0 0 0 0 0 0 0 0 0
    气体流量过大 0 0 0 0 0 0.38 0 0 0 1.24
    气体流量过小 0 0 0 0 0 0.11 2.17 0 0 0
    下载: 导出CSV
  • [1] 吴叶军, 魏艳红. 智能化焊接CAPP的分析与开发[J]. 焊接学报, 2015, 36(7): 109 − 112.

    Wu Yejun, Wei Yanhong. Analysis and development of intelligentialized welding CAPP system[J]. Transactions of the China Welding Institution, 2015, 36(7): 109 − 112.

    [2]

    Tsoukalas V D, Kontesis M, Badogiannis E, et al. WELDES: An intelligent defects expert system for aluminum welding process[J]. Wseas Transactions on Information Science & Applications, 2007, 4(2): 339 − 345.

    [3] 宋燕利, 余成, 戴定国, 等. 基于BP 和GA 的激光焊接热源模型参数优化[J]. 塑性工程学报, 2017, 24(1): 218 − 222.

    Song Yanli, Yu Cheng, Dai Dingguo, et al. Parameter optimization of heat source model for laser welding based on BP neural network and genetic algorithm[J]. Journal of Plasticity Engineering, 2017, 24(1): 218 − 222.

    [4] 邵晴, 于庆斌, 尹华, 等. 焊接热输入对高速动车组转向架侧梁焊接变形的影响及优化[J]. 焊接学报, 2020, 41(12): 25 − 32,48. doi: 10.12073/j.hjxb.20200216002

    Shao Qing, Yu Qingbin, Yin Hua, et al. Effect of welding heat input on welding deformation of bogie side beam of high-speed EMU and optimization[J]. Transactions of the China Welding Institution, 2020, 41(12): 25 − 32,48. doi: 10.12073/j.hjxb.20200216002

    [5]

    Liu J, Xu G C, Ren L, et al. Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 2581 − 2588. doi: 10.1007/s00170-016-9588-y

    [6]

    Li Z K, Zhao X H. BP artificial neural network based wave front correction for sensor-less free space optics communication[J]. Optics Communications, 2017, 385: 219 − 228. doi: 10.1016/j.optcom.2016.10.037

    [7] 刘占军, 单宝峰, 贺平. 小波神经网络在铝合金焊接缺陷诊断中的研究[J]. 振动、测试与诊断, 2005, 25(3): 219 − 221. doi: 10.3969/j.issn.1004-6801.2005.03.013

    Liu Zhanjun, Shan Baofeng, He Ping. Wavelet neural network application to diagnosing defect of aluminum alloy welding[J]. Journal of Vibration, Measurement & Diagnosis, 2005, 25(3): 219 − 221. doi: 10.3969/j.issn.1004-6801.2005.03.013

    [8] 姜洪权, 贺帅, 高建民, 等. 一种改进卷积神经网络模型的焊缝缺陷识别方法[J]. 机械工程学报, 2020, 56(8): 235 − 242. doi: 10.3901/JME.2020.08.235

    Jiang Hongquan, He Shuai, Gao Jianmin, et al. An improved convolutional neural network for weld defect recognition[J]. Journal of Mechanical Engineering, 2020, 56(8): 235 − 242. doi: 10.3901/JME.2020.08.235

    [9]

    Ravi R, Aaquib R K, Chirag P, et al. Classification and identification of surface defects in friction stir welding: An image processing approach[J]. Journal of Manufacturing Processes, 2016, 22: 237 − 253. doi: 10.1016/j.jmapro.2016.03.009

    [10]

    Bacioiu D, Melton G, Papaelias M, et al. Automated defect classification of aluminium 5083 TIG welding using HDR camera and neural networks[J]. Journal of Manufacturing Processes, 2019, 45: 603 − 613. doi: 10.1016/j.jmapro.2019.07.020

    [11]

    Zhang Z, Jia L M, Qin Y. Modified constriction particle swarm optimization algorithm[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 1107 − 1113.

    [12] 张爱华, 高佛来, 牛小革, 等. 基于BP神经网络的钢轨闪光对焊接头灰斑面积预测[J]. 焊接学报, 2016, 37(11): 11 − 14.

    Zhang Aihua, Gao Folai, Niu Xiaoge, et al. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. Transactions of the China Welding Institution, 2016, 37(11): 11 − 14.

    [13]

    Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261 − 271. doi: 10.1109/TPAMI.2007.35

    [14]

    Li J Y, Men C, Qi J F, et al. Impact factor analysis, prediction, and mapping of soil corrosion of carbon steel across China based on MIV-BP artificial neural network and GIS[J]. Journal of Soils and Sediments, 2020, 20(8): 3204 − 3216. doi: 10.1007/s11368-020-02649-5

    [15] 刘碧瑶. 基于BP神经网络的住院费用建模研究[D]. 杭州: 浙江大学, 2006.

    Liu Biyao. Research of establishing hospitalization charge fitting model by using BP neural network[D]. Hangzhou: Zhejiang University, 2006.

    [16]

    Sheela K G, Deepa S N. Review on methods to fix number of hidden neurons in neural networks[J]. Mathematical Problems in Engineering, 2013(6): 425740.

    [17] 王东风, 孟丽. 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552 − 1561.

    Wang Dongfeng, Meng Li. Performance analysis and parameter selection of PSO algorithms[J]. Acta Automatica Sinica, 2016, 42(10): 1552 − 1561.

  • 期刊类型引用(4)

    1. 许峰,杨莉,熊义峰,刘坡,张尧成. 搅拌摩擦加工Al-Pb表面复合材料的微结构和织构. 稀有金属材料与工程. 2021(03): 957-962 . 百度学术
    2. 张亚敏,姜永亮. 基于神经网络算法的铝基复合材料搅拌铸造工艺优化. 热加工工艺. 2021(18): 91-94 . 百度学术
    3. 张孙艺,周爽,朱绍举,高吉成. 基于FSP技术制备CeO_2颗粒增强铝基复合材料. 机械工程与自动化. 2020(02): 151-152 . 百度学术
    4. 杨绍斌,张旭,谢帅. 高质量分数Al_2O_3/Al复合材料的硬度和耐磨性能. 材料保护. 2018(04): 47-50+140 . 百度学术

    其他类型引用(2)

图(8)  /  表(4)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  43
  • PDF下载量:  43
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2022-02-14
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-01-24

目录

    /

    返回文章
    返回