高级检索

6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析

张颖川, 马国栋, 代鹏, 王敬水, 金炜

张颖川, 马国栋, 代鹏, 王敬水, 金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001
引用本文: 张颖川, 马国栋, 代鹏, 王敬水, 金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001
ZHANG Yingchuan, MA Guodong, DAI Peng, WANG Jingshui, JIN Wei. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001
Citation: ZHANG Yingchuan, MA Guodong, DAI Peng, WANG Jingshui, JIN Wei. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(6): 88-95. DOI: 10.12073/j.hjxb.20210512001

6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析

基金项目: 中国铁道科学研究院集团有限公司院基金重点课题 (2019YJ021)
详细信息
    作者简介:

    张颖川,博士;主要从事材料焊接结构设计、复合材料设计等研究工作;Email: zhangyingchuan@zemt.cn

    通讯作者:

    金炜,副研究员;Email: jinwei@zemt.cn.

  • 中图分类号: TG 47

Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy

  • 摘要: 基于双轴肩搅拌摩擦焊热输入的理论分析,建立了焊接工具结构尺寸特征值与待焊工件厚度之间的工程模型.利用该工程模型,设计并优化得到适用于厚度为2.5 mm的6061-T6铝合金薄板的双轴肩搅拌摩擦焊工具.使用该工具对中空薄壁型材进行焊接,并对焊接工艺参数进行优化. 结果表明,当焊接工具转速为1 000 r/min、焊接速度为600 mm/min时,可以得到综合力学性能最佳的焊接接头,其中正面焊缝焊接接头抗拉强度可达231 MPa,为母材抗拉强度的77%,弯曲角度达180°;反面焊缝焊接接头抗拉强度可达226 MPa,为母材抗拉强度的76%,弯曲角度达180°.
    Abstract: An engineering model between characteristic value of welding tool and specimen thickness was established based on heat input theoretical analysis of bobbing tool friction stir welding. According to this model, a welding tool was designed and optimized, which was used for join 2.5 mm thin-walled extrude profile of 6061-T6 aluminum alloy. Friction stir welding parameters were optimized as well. When the rotation speed of the tool was 1 000 r/min and welding speed was 600 mm/min, the joint obtained a maximum mechanical properties. The front side joint had a tensile strength of 231 MPa, 77% of the base material, and a bend angle of 180°, while the back side joint had a tensile strength of 226 MPa, 76% of the base material, and a bend angle of 180°.
  • 图  1   焊接设备及工装

    Figure  1.   Welding equipment and fixture. (a) FSW-HD type friction stir welding equipment; (b) welding fixture

    图  2   型材结构

    Figure  2.   Extruded profile structure. (a) cross section schematic of extruded profile; (b) large area structure formed by multiple components

    图  3   轴肩与工件摩擦的圆环面示意图

    Figure  3.   Schematic diagram of the ring area of friction between shoulder and workpiece

    图  4   S-d曲线的拟合方程

    Figure  4.   Fitted curve of S-d relation

    图  5   1号工具焊接接头照片

    Figure  5.   Picture of welded joints by tool No.1

    图  6   2号工具焊接接头照片

    Figure  6.   Pictures of welded joints by tool No.2

    图  7   3号工具焊接接头照片

    Figure  7.   Picture of welded joints by tool No.3

    图  8   不同转速下焊接接头的力学性能

    Figure  8.   Mechanical properties of FSW joints with different rotation speeds

    图  9   不同焊接速度下焊接接头的力学性能

    Figure  9.   Mechanical properties of FSW joints with different weld speeds. (a) rotation speed of 1 000 r/min; (b) rotation speed of 1 500 r/min

    表  1   6061铝合金中空薄壁型材化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061-T6 aluminum alloy extruded profile

    项目MgSiCuCrFeZnMnAl
    实测值0.8510.6880.1610.0860.1430.0160.081余量
    标准值0.8 ~ 1.20.4 ~ 0.80.15 ~ 0.40.04 ~ 0.350 ~ 0.70 ~ 0.250 ~ 0.15余量
    下载: 导出CSV

    表  2   6061铝合金中空薄壁型材的力学性能

    Table  2   Mechanical properties of 6061-T6 aluminum alloy extruded profile

    编号抗拉强度
    Rm/MPa
    屈服强度
    ReL/MPa
    断后伸长率
    A(%)
    显微硬度
    H(HV0.2)
    母材12972738.02110
    母材22982766.75113
    母材33002796.45111
    平均2982767.07111
    下载: 导出CSV

    表  3   部分6061-T6铝合金双轴肩搅拌摩擦焊研究结果

    Table  3   Reported results of 6061-T6 aluminum alloy bobbing tool FSW

    文献
    编号
    待焊材料厚度
    d/mm
    上轴肩直径
    Ru/mm
    下轴肩直径
    Rd/mm
    轴肩间距
    H/mm
    搅拌针直径
    Rp/mm
    抗拉强度
    Rm/MPa
    接头系数
    η(%)
    特征值
    S
    [21]418163.88230721 295.4
    [22]518164.98221771 348.2
    [23]616165.88203591 174.4
    [24]7.823237.6510191743 365.5
    [25]418163.948188661 302.1
    [26]418163.98195691 300.2
    [27]4181848182661 522
    [28]518164.958224751 350.6
    [29]6.35222268229932 822
    [30]824247.711.9237823 852.5
    下载: 导出CSV

    表  4   FSW工具结构的尺寸参数

    Table  4   Dimension parameter of the FSW tool

    工具编号上轴肩直径 Ru/mm下轴肩直径 Rd/mm轴肩间距 H/mm搅拌针直径 Rp/mm特征值S
    116162.361 032
    212122.36440
    314122.36,4.5552
    下载: 导出CSV
  • [1] 张鑫, 张洁利, 韩冬等. 搅拌摩擦焊技术研究现状及发展展望[J]. 热加工工艺, 2018, 47(23): 1 − 5.

    Zhang Xin, Zhang Jieli, Han Dong et al. Research status and developing prospect of friction stir welding[J]. Hot Working Technology, 2018, 47(23): 1 − 5.

    [2] 张华, 林三宝, 吴林等. 搅拌摩擦焊研究进展及前景展望[J]. 焊接学报, 2003, 24(3): 91 − 96. doi: 10.3321/j.issn:0253-360X.2003.03.025

    Zhang Hua, Lin San-Bao, Wu Lin, et al. Current progress and prospect of friction stir welding[J]. Transactions of the China Welding Institution, 2003, 24(3): 91 − 96. doi: 10.3321/j.issn:0253-360X.2003.03.025

    [3] 董春林, 栾国红, 关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009

    Dong Chunlin, Luan Guohong, Guan Qiao. Prospects of application and development of friction stir welding in aerospace and aviation industry[J]. Welding & Joining, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009

    [4] 温林秀, 赵运强, 董春林, 等. 1561铝合金搅拌摩擦焊接过程压力特征及接头组织性能分析[J]. 焊接学报, 2019, 40(12): 91 − 96.

    Wen Linxiu, Zhao Yunqiang, Dong Chunlin, et al. Analysis on characteristics of welding pressure, microstructures and mechanical properties of friction stir welded 1561 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(12): 91 − 96.

    [5] 荆忠亮, 赵彤涌, 宋志强. 船舶结构的搅拌摩擦焊技术[J]. 舰船科学技术, 2015(4): 117 − 120. doi: 10.3404/j.issn.1672-7649.2015.04.024

    Jing Zhongliang, Zhao Tongyong, Song Zhiqiang. Friction stir welding technology research in chip structure[J]. Ship Science and Technology, 2015(4): 117 − 120. doi: 10.3404/j.issn.1672-7649.2015.04.024

    [6] 相倩, 吕念春, 薛鹏, 等. 铝-钢异种金属搅拌摩擦焊研究现状及展望[J]. 机械工程学报, 2017, 53(20): 28 − 37. doi: 10.3901/JME.2017.20.028

    Xiang Qian, Lv Nianchun, Xue Peng, et al. Research status and prospect on friction stir welded dissimilar al-steel joints[J]. Journal of Mechanical Engineering, 2017, 53(20): 28 − 37. doi: 10.3901/JME.2017.20.028

    [7] 杜文普, 钮旭晶, 郁志凯, 等. 6005A-T6铝合金型材搅拌摩擦焊与MIG焊的数值分析[J]. 焊接技术, 2019, 48(3): 16 − 20.

    Du Wenpu, Niu Xujing, Yu Zhikai, et al. Numerical analysis of friction stir welding and MIG welding of 6005A-T6 aluminum alloy[J]. Welding Technology, 2019, 48(3): 16 − 20.

    [8] 钮旭晶, 侯振国, 鲁二敬, 等. 标动铝合金底板双轴肩搅拌摩擦焊的数值仿真[J]. 轨道交通装备与技术, 2019(6): 26 − 30.

    Niu Xujing, Hou Zhenguo, Lu Erjing, et al. Numerical simulation of FSW with double probes for base board of standard EMU[J]. Rail transportation Equipment and Technology, 2019(6): 26 − 30.

    [9] 闫占奇. 轨道交通车辆铝合金地板FSW与MIG焊残余应力对比分析[J]. 城市轨道交通研究, 2018, 21(2): 64 − 66.

    Yan Zhanqi. Comparative analysis of residual stress distribution on railway vehicle floor with FSW and MIG welding[J]. Urban Mass Transit, 2018, 21(2): 64 − 66.

    [10] 廖蕴博. 双轴肩搅拌摩擦焊工艺研究[D]. 兰州: 兰州理工大学, 2017.

    Liao Yunbo. Study on BT-FSW process of aluminum alloy[D]. Lanzhou: Lanzhou University of Technology, 2017.

    [11] 郝云飞, 魏瑞刚, 周庆, 等. 焊接热输入对铝合金双轴肩搅拌摩擦焊缝形貌与接头性能的影响[J]. 焊接学报, 2018, 39(2): 84 − 88.

    Hao Yunfei, Wei Ruigang, Zhou Qing, et al. Effect of heat input on weld morphology and tensile properties of bobbin friction stir welded joints[J]. Transactions of the China Welding Institution, 2018, 39(2): 84 − 88.

    [12] 吉华, 邓运来, 邓建峰, 等. 焊接速度对6005A-T6铝合金双轴肩搅拌摩擦焊接头力学性能的影响[J]. 焊接学报, 2019, 40(5): 24 − 29. doi: 10.12073/j.hjxb.2019400122

    Ji Hua, Deng Yunlai, Deng Jianfeng, et al. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2019, 40(5): 24 − 29. doi: 10.12073/j.hjxb.2019400122

    [13] 周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006

    Zhou Li, Liu Chaolei, Wang Ji, et al. Development of bobbin tool friction stir welding[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006

    [14] 夏佩云, 尹玉环, 赵慧慧, 等. 厚板双轴肩搅拌摩擦焊温度场及流场数值模拟[J]. 电焊机, 2018, 48(3): 294 − 299.

    Xia Peiyun, Yin Yuhuan, Zhao Huihui, et al. Nummerical simulation of temperature and flow for bobbin tool friction stir welding of thick plates[J]. Electric Welding Machine, 2018, 48(3): 294 − 299.

    [15] 李敬勇, 周小平, 董春林, 等. 6082铝合金双轴肩搅拌摩擦焊试板温度场研究[J]. 航空材料学报, 2013, 33(5): 36 − 40.

    Li Jingyong, Zhou Xiaoping, Dong Chunlin, et al. Temperature field in 6082 aluminum alloy samples bobbin tool friction stir welded[J]. Journal of Aeronautical Materials, 2013, 33(5): 36 − 40.

    [16] 刘琪, 董仕节, 官旭, 等. 搅拌摩擦焊温度场数值模型的研究进展[J]. 材料导报, 2015, 29(21): 118 − 125.

    Liu Qi, Dong Shijie, Guan Xu, et al. A review of numerical model for temperature field in friction stir welding process[J]. Materials Reports, 2015, 29(21): 118 − 125.

    [17] 王希靖, 郭瑞杰, 陈书锦, 等. 搅拌摩擦焊摩擦功率的计算与检测[J]. 焊接学报, 2004, 25(4): 93 − 95. doi: 10.3321/j.issn:0253-360X.2004.04.024

    Wang Xijing, Guo Ruijie, Chen Shujin, et al. Calculating and measuring of heating power of friction stir welding[J]. Transactions of the China Welding Institution, 2004, 25(4): 93 − 95. doi: 10.3321/j.issn:0253-360X.2004.04.024

    [18]

    Mendez P F, Tello K E, Lienert T J. Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J]. Acta Meterialia, 2010, 58(18): 6012 − 6026. doi: 10.1016/j.actamat.2010.07.019

    [19]

    Schmidt H, Hattel J. Modelling heat flow around tool Probe in friction stir welding[J]. Science Technology of Welding and Joining, 2005, 10(2): 176 − 186. doi: 10.1179/174329305X36070

    [20]

    Diogo Mariano Neto, Pedro Neto. Numerical modeling of friction stir welding process: A literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 115 − 126. doi: 10.1007/s00170-012-4154-8

    [21] 冀海贵. 铝合金双轴肩搅拌摩擦焊搅拌头设计、接头组织和性能研究[D]. 南昌: 南昌航空大学, 2017.

    Ji Haigui. Study on the tool design, joint microstructure and propertise of bobbin tool friction stir welded aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2017.

    [22] 刘朝磊. 6061铝合金双轴肩搅拌摩擦焊工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Liu Chaolei. Research on process and mechanism ofselr-reacting friction stir welding for 6061 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2015.

    [23] 张春波, 周军, 张汇文, 等. 6061-T6铝合金双轴肩搅拌摩擦焊接头组织与力学性能[J]. 电焊机, 2015, 45(1): 120 − 124.

    Zhang Chunbo, Zhou Jun, Zhang Huiwen, et al. Microstructure and mechanical properties of bobbin tool friction stir welding of 6061-T6 aluminium alloy[J]. Electric Welding Machine, 2015, 45(1): 120 − 124.

    [24] 王鹏浩, 陈书锦, 李浩, 等. 不同轴肩组合对双轴肩搅拌摩擦焊接质量的影响[J]. 电焊机, 2015, 45(10): 23 − 29.

    Wang Penghao, Chen Shujin, Li Hao, et al. Effect of different shoulder combination on quality of bobbin tool friction stir welding[J]. Electric Welding Machine, 2015, 45(10): 23 − 29.

    [25]

    Hou J C, Liu H J, Zhao Y Q. Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 1073 − 1079. doi: 10.1007/s00170-014-5857-9

    [26]

    Liu H J, Hou J C, Guo H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J]. Materials and Design, 2013, 50: 872 − 878. doi: 10.1016/j.matdes.2013.03.105

    [27]

    Piyush Singh, Pankaj Biswas, Sachin D. Kore. Finite element Method and experimental study of self-reacting friction stir welding of aluminium alloy AA6061-T6[J]. Simulations for Design and Manufacturing, 2018: 79 − 102.

    [28]

    Zhou L, Li G H, Liu C L, et al. Effect of rotation speed on microstructure and mechanical properties of self-reacting friction stir welded Al-Mg-Si alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 3509 − 3516. doi: 10.1007/s00170-016-9318-5

    [29]

    Yanga C, Nia D R, Xue P, et al. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates[J]. Materials Characterization, 2018, 145: 20 − 28. doi: 10.1016/j.matchar.2018.08.027

    [30]

    Luis Trueba Jr, Monica A Torres, Lucie B Johannes, et al. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6[J]. International Journal of Material Forming, 2018, 11: 559 − 570. doi: 10.1007/s12289-017-1365-4

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(9)  /  表(4)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  49
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-05-20
  • 网络出版日期:  2022-05-29
  • 刊出日期:  2022-07-07

目录

    /

    返回文章
    返回