Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy
-
摘要: 基于双轴肩搅拌摩擦焊热输入的理论分析,建立了焊接工具结构尺寸特征值与待焊工件厚度之间的工程模型.利用该工程模型,设计并优化得到适用于厚度为2.5 mm的6061-T6铝合金薄板的双轴肩搅拌摩擦焊工具.使用该工具对中空薄壁型材进行焊接,并对焊接工艺参数进行优化. 结果表明,当焊接工具转速为1 000 r/min、焊接速度为600 mm/min时,可以得到综合力学性能最佳的焊接接头,其中正面焊缝焊接接头抗拉强度可达231 MPa,为母材抗拉强度的77%,弯曲角度达180°;反面焊缝焊接接头抗拉强度可达226 MPa,为母材抗拉强度的76%,弯曲角度达180°.
-
关键词:
- 双轴肩搅拌摩擦焊 /
- 6061-T6铝合金 /
- 中空薄壁型材 /
- 焊接工具设计
Abstract: An engineering model between characteristic value of welding tool and specimen thickness was established based on heat input theoretical analysis of bobbing tool friction stir welding. According to this model, a welding tool was designed and optimized, which was used for join 2.5 mm thin-walled extrude profile of 6061-T6 aluminum alloy. Friction stir welding parameters were optimized as well. When the rotation speed of the tool was 1 000 r/min and welding speed was 600 mm/min, the joint obtained a maximum mechanical properties. The front side joint had a tensile strength of 231 MPa, 77% of the base material, and a bend angle of 180°, while the back side joint had a tensile strength of 226 MPa, 76% of the base material, and a bend angle of 180°. -
-
表 1 6061铝合金中空薄壁型材化学成分(质量分数,%)
Table 1 Chemical compositions of 6061-T6 aluminum alloy extruded profile
项目 Mg Si Cu Cr Fe Zn Mn Al 实测值 0.851 0.688 0.161 0.086 0.143 0.016 0.081 余量 标准值 0.8 ~ 1.2 0.4 ~ 0.8 0.15 ~ 0.4 0.04 ~ 0.35 0 ~ 0.7 0 ~ 0.25 0 ~ 0.15 余量 表 2 6061铝合金中空薄壁型材的力学性能
Table 2 Mechanical properties of 6061-T6 aluminum alloy extruded profile
编号 抗拉强度
Rm/MPa屈服强度
ReL/MPa断后伸长率
A(%)显微硬度
H(HV0.2)母材1 297 273 8.02 110 母材2 298 276 6.75 113 母材3 300 279 6.45 111 平均 298 276 7.07 111 表 3 部分6061-T6铝合金双轴肩搅拌摩擦焊研究结果
Table 3 Reported results of 6061-T6 aluminum alloy bobbing tool FSW
文献
编号待焊材料厚度
d/mm上轴肩直径
Ru/mm下轴肩直径
Rd/mm轴肩间距
H/mm搅拌针直径
Rp/mm抗拉强度
Rm/MPa接头系数
η(%)特征值
S[21] 4 18 16 3.8 8 230 72 1 295.4 [22] 5 18 16 4.9 8 221 77 1 348.2 [23] 6 16 16 5.8 8 203 59 1 174.4 [24] 7.8 23 23 7.65 10 191 74 3 365.5 [25] 4 18 16 3.94 8 188 66 1 302.1 [26] 4 18 16 3.9 8 195 69 1 300.2 [27] 4 18 18 4 8 182 66 1 522 [28] 5 18 16 4.95 8 224 75 1 350.6 [29] 6.35 22 22 6 8 229 93 2 822 [30] 8 24 24 7.7 11.9 237 82 3 852.5 表 4 FSW工具结构的尺寸参数
Table 4 Dimension parameter of the FSW tool
工具编号 上轴肩直径 Ru/mm 下轴肩直径 Rd/mm 轴肩间距 H/mm 搅拌针直径 Rp/mm 特征值S 1 16 16 2.3 6 1 032 2 12 12 2.3 6 440 3 14 12 2.3 6,4.5 552 -
[1] 张鑫, 张洁利, 韩冬等. 搅拌摩擦焊技术研究现状及发展展望[J]. 热加工工艺, 2018, 47(23): 1 − 5. Zhang Xin, Zhang Jieli, Han Dong et al. Research status and developing prospect of friction stir welding[J]. Hot Working Technology, 2018, 47(23): 1 − 5.
[2] 张华, 林三宝, 吴林等. 搅拌摩擦焊研究进展及前景展望[J]. 焊接学报, 2003, 24(3): 91 − 96. doi: 10.3321/j.issn:0253-360X.2003.03.025 Zhang Hua, Lin San-Bao, Wu Lin, et al. Current progress and prospect of friction stir welding[J]. Transactions of the China Welding Institution, 2003, 24(3): 91 − 96. doi: 10.3321/j.issn:0253-360X.2003.03.025
[3] 董春林, 栾国红, 关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009 Dong Chunlin, Luan Guohong, Guan Qiao. Prospects of application and development of friction stir welding in aerospace and aviation industry[J]. Welding & Joining, 2008(11): 25 − 31. doi: 10.3969/j.issn.1001-1382.2008.11.009
[4] 温林秀, 赵运强, 董春林, 等. 1561铝合金搅拌摩擦焊接过程压力特征及接头组织性能分析[J]. 焊接学报, 2019, 40(12): 91 − 96. Wen Linxiu, Zhao Yunqiang, Dong Chunlin, et al. Analysis on characteristics of welding pressure, microstructures and mechanical properties of friction stir welded 1561 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(12): 91 − 96.
[5] 荆忠亮, 赵彤涌, 宋志强. 船舶结构的搅拌摩擦焊技术[J]. 舰船科学技术, 2015(4): 117 − 120. doi: 10.3404/j.issn.1672-7649.2015.04.024 Jing Zhongliang, Zhao Tongyong, Song Zhiqiang. Friction stir welding technology research in chip structure[J]. Ship Science and Technology, 2015(4): 117 − 120. doi: 10.3404/j.issn.1672-7649.2015.04.024
[6] 相倩, 吕念春, 薛鹏, 等. 铝-钢异种金属搅拌摩擦焊研究现状及展望[J]. 机械工程学报, 2017, 53(20): 28 − 37. doi: 10.3901/JME.2017.20.028 Xiang Qian, Lv Nianchun, Xue Peng, et al. Research status and prospect on friction stir welded dissimilar al-steel joints[J]. Journal of Mechanical Engineering, 2017, 53(20): 28 − 37. doi: 10.3901/JME.2017.20.028
[7] 杜文普, 钮旭晶, 郁志凯, 等. 6005A-T6铝合金型材搅拌摩擦焊与MIG焊的数值分析[J]. 焊接技术, 2019, 48(3): 16 − 20. Du Wenpu, Niu Xujing, Yu Zhikai, et al. Numerical analysis of friction stir welding and MIG welding of 6005A-T6 aluminum alloy[J]. Welding Technology, 2019, 48(3): 16 − 20.
[8] 钮旭晶, 侯振国, 鲁二敬, 等. 标动铝合金底板双轴肩搅拌摩擦焊的数值仿真[J]. 轨道交通装备与技术, 2019(6): 26 − 30. Niu Xujing, Hou Zhenguo, Lu Erjing, et al. Numerical simulation of FSW with double probes for base board of standard EMU[J]. Rail transportation Equipment and Technology, 2019(6): 26 − 30.
[9] 闫占奇. 轨道交通车辆铝合金地板FSW与MIG焊残余应力对比分析[J]. 城市轨道交通研究, 2018, 21(2): 64 − 66. Yan Zhanqi. Comparative analysis of residual stress distribution on railway vehicle floor with FSW and MIG welding[J]. Urban Mass Transit, 2018, 21(2): 64 − 66.
[10] 廖蕴博. 双轴肩搅拌摩擦焊工艺研究[D]. 兰州: 兰州理工大学, 2017. Liao Yunbo. Study on BT-FSW process of aluminum alloy[D]. Lanzhou: Lanzhou University of Technology, 2017.
[11] 郝云飞, 魏瑞刚, 周庆, 等. 焊接热输入对铝合金双轴肩搅拌摩擦焊缝形貌与接头性能的影响[J]. 焊接学报, 2018, 39(2): 84 − 88. Hao Yunfei, Wei Ruigang, Zhou Qing, et al. Effect of heat input on weld morphology and tensile properties of bobbin friction stir welded joints[J]. Transactions of the China Welding Institution, 2018, 39(2): 84 − 88.
[12] 吉华, 邓运来, 邓建峰, 等. 焊接速度对6005A-T6铝合金双轴肩搅拌摩擦焊接头力学性能的影响[J]. 焊接学报, 2019, 40(5): 24 − 29. doi: 10.12073/j.hjxb.2019400122 Ji Hua, Deng Yunlai, Deng Jianfeng, et al. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2019, 40(5): 24 − 29. doi: 10.12073/j.hjxb.2019400122
[13] 周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006 Zhou Li, Liu Chaolei, Wang Ji, et al. Development of bobbin tool friction stir welding[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
[14] 夏佩云, 尹玉环, 赵慧慧, 等. 厚板双轴肩搅拌摩擦焊温度场及流场数值模拟[J]. 电焊机, 2018, 48(3): 294 − 299. Xia Peiyun, Yin Yuhuan, Zhao Huihui, et al. Nummerical simulation of temperature and flow for bobbin tool friction stir welding of thick plates[J]. Electric Welding Machine, 2018, 48(3): 294 − 299.
[15] 李敬勇, 周小平, 董春林, 等. 6082铝合金双轴肩搅拌摩擦焊试板温度场研究[J]. 航空材料学报, 2013, 33(5): 36 − 40. Li Jingyong, Zhou Xiaoping, Dong Chunlin, et al. Temperature field in 6082 aluminum alloy samples bobbin tool friction stir welded[J]. Journal of Aeronautical Materials, 2013, 33(5): 36 − 40.
[16] 刘琪, 董仕节, 官旭, 等. 搅拌摩擦焊温度场数值模型的研究进展[J]. 材料导报, 2015, 29(21): 118 − 125. Liu Qi, Dong Shijie, Guan Xu, et al. A review of numerical model for temperature field in friction stir welding process[J]. Materials Reports, 2015, 29(21): 118 − 125.
[17] 王希靖, 郭瑞杰, 陈书锦, 等. 搅拌摩擦焊摩擦功率的计算与检测[J]. 焊接学报, 2004, 25(4): 93 − 95. doi: 10.3321/j.issn:0253-360X.2004.04.024 Wang Xijing, Guo Ruijie, Chen Shujin, et al. Calculating and measuring of heating power of friction stir welding[J]. Transactions of the China Welding Institution, 2004, 25(4): 93 − 95. doi: 10.3321/j.issn:0253-360X.2004.04.024
[18] Mendez P F, Tello K E, Lienert T J. Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J]. Acta Meterialia, 2010, 58(18): 6012 − 6026. doi: 10.1016/j.actamat.2010.07.019
[19] Schmidt H, Hattel J. Modelling heat flow around tool Probe in friction stir welding[J]. Science Technology of Welding and Joining, 2005, 10(2): 176 − 186. doi: 10.1179/174329305X36070
[20] Diogo Mariano Neto, Pedro Neto. Numerical modeling of friction stir welding process: A literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 115 − 126. doi: 10.1007/s00170-012-4154-8
[21] 冀海贵. 铝合金双轴肩搅拌摩擦焊搅拌头设计、接头组织和性能研究[D]. 南昌: 南昌航空大学, 2017. Ji Haigui. Study on the tool design, joint microstructure and propertise of bobbin tool friction stir welded aluminum alloy[D]. Nanchang: Nanchang Hangkong University, 2017.
[22] 刘朝磊. 6061铝合金双轴肩搅拌摩擦焊工艺及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. Liu Chaolei. Research on process and mechanism ofselr-reacting friction stir welding for 6061 aluminum alloy[D]. Harbin: Harbin Institute of Technology, 2015.
[23] 张春波, 周军, 张汇文, 等. 6061-T6铝合金双轴肩搅拌摩擦焊接头组织与力学性能[J]. 电焊机, 2015, 45(1): 120 − 124. Zhang Chunbo, Zhou Jun, Zhang Huiwen, et al. Microstructure and mechanical properties of bobbin tool friction stir welding of 6061-T6 aluminium alloy[J]. Electric Welding Machine, 2015, 45(1): 120 − 124.
[24] 王鹏浩, 陈书锦, 李浩, 等. 不同轴肩组合对双轴肩搅拌摩擦焊接质量的影响[J]. 电焊机, 2015, 45(10): 23 − 29. Wang Penghao, Chen Shujin, Li Hao, et al. Effect of different shoulder combination on quality of bobbin tool friction stir welding[J]. Electric Welding Machine, 2015, 45(10): 23 − 29.
[25] Hou J C, Liu H J, Zhao Y Q. Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 1073 − 1079. doi: 10.1007/s00170-014-5857-9
[26] Liu H J, Hou J C, Guo H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J]. Materials and Design, 2013, 50: 872 − 878. doi: 10.1016/j.matdes.2013.03.105
[27] Piyush Singh, Pankaj Biswas, Sachin D. Kore. Finite element Method and experimental study of self-reacting friction stir welding of aluminium alloy AA6061-T6[J]. Simulations for Design and Manufacturing, 2018: 79 − 102.
[28] Zhou L, Li G H, Liu C L, et al. Effect of rotation speed on microstructure and mechanical properties of self-reacting friction stir welded Al-Mg-Si alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89: 3509 − 3516. doi: 10.1007/s00170-016-9318-5
[29] Yanga C, Nia D R, Xue P, et al. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates[J]. Materials Characterization, 2018, 145: 20 − 28. doi: 10.1016/j.matchar.2018.08.027
[30] Luis Trueba Jr, Monica A Torres, Lucie B Johannes, et al. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6[J]. International Journal of Material Forming, 2018, 11: 559 − 570. doi: 10.1007/s12289-017-1365-4
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)