Microstructure and mechanical performance of induction-pressure welding joints interface between Q235 steel and 5052 aluminium alloy
-
摘要: 为了有效实现车身上的钢/铝复合结构连接,提出了一种新型的焊接与连接技术−感应-静压焊(induction-pressure welding,IPW). 通过光学显微镜、电子扫描显微镜对钢/铝合金连接界面的组织形貌进行观察,通过X射线色散能谱仪、X射线衍射仪及显微硬度计测试了钢/铝连接界面的化学成分、金属间化合物种类以及显微硬度. 结果表明,采用感应-静压焊工艺可以实现Q235钢与5052铝合金的有效连接. 接头界面上1、2号试样的金属间化合物平均厚度分别为115,85 μm. 接头界面的微观组织形貌呈锯齿状,并且组织向钢侧生长. 接头界面组织的硬度明显高于两侧钢铝基体组织的硬度,1,2号试样接头的抗拉强度分别为49,158 MPa. 同时,在整个感应-静压焊工艺过程中,随着加热温度的降低,金属间化合物厚度呈线性减少. 此外,还发现铝原子的扩散能力显著高于铁原子. 故而,在钢/铝感应-静压焊接头界面生成了富铝的金属间化合物Fe2Al5和FeAl2.Abstract: In order to realize the efficient connection between steel and aluminum alloy on vehicle body, a novel welding method—induction-pressure welding (IPW) was presented. The chemical compositions, intermetallic compounds, micro-structure and hardness on interface between Q235 steel and 5052 aluminum alloy after IPW process were tested by optical microscope, scanning electron microscopy, X-ray diffraction and microhardness tester. The results showed that the connection between Q235 steel and 5052 aluminum alloy can be realized by IPW process. The thickness of the intermetallic compound of No.1 and No.2 samples is approximately 115 μm and 85 μm, respectively. The morphology of interface microstructure is saw-tooth formation and the tooth tip is pointed towards the steel. The hardness of joints interface microstructure is higher than that of matrix for steel and aluminum alloy. The tensile strength of the No.1 and No.2 samples joint is 49 MPa and 158 MPa, respectively. Meanwhile, the thickness of intermetallic compound decreases linearly with the decrease of heating temperature during IPW process. In addition, the diffusibility of aluminum atom is higher than that of iron atom. The intermetallic compound with aluminum-rich such as Fe2Al5 and FeAl2 will be formed on interface between steel and aluminum alloy during IPW process.
-
-
表 1 基体材料主要化学成分(质量分数,%)
Table 1 Chemical compositions of Q235 steel and 5052 aluminum alloy
材料 Mg Cr Cu Mn Ti Si Zn C Al Fe Q235 — 0.70 0.10 0.44 0.16 0.10 — 0.10 — 余量 5052 2.22 0.22 0.01 0.01 0.03 0.08 0.01 — 余量 0.20 表 2 感应-静压焊过程的具体工艺参数
Table 2 Detailed parameters during IPW process
电源功率
P/kW频率
f/kHz空气间隙
G/mm加热时间
t/mm静压力
F/N50 30 4 4 200 -
[1] Palazzo J, Geyer R. Consequential life cycle assessment of automotive material substitution: replacing steel with aluminum in production of north American vehicles[J]. Environmental Impact Assessment Review, 2019, 75: 47 − 58. doi: 10.1016/j.eiar.2018.12.001
[2] Piccini J M, Svoboda H G. Tool geometry optimization in friction stir spot welding of Al-steel joints[J]. Journal of Manufacturing Processes, 2017, 26: 142 − 154. doi: 10.1016/j.jmapro.2017.02.004
[3] Shi L T, Kang J D, Gesing M, et al. Fatigue life assessment of Al-steel resistance spot welds using the maximum principal strain approach considering material in homogeneity[J]. International Journal of Fatigue, 2020, 140: 105851. doi: 10.1016/j.ijfatigue.2020.105851
[4] Yang S L, Zhang J, Lian J, et al. Welding of aluminum alloy to zinc coated steel by cold metal transfer[J]. Materials and Design, 2013, 49: 602 − 612. doi: 10.1016/j.matdes.2013.01.045
[5] Lee J H, Kim J D, Oh J S, et al. Effect of Al coating conditions on laser weld ability of Al coated steel sheet[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 946 − 951. doi: 10.1016/S1003-6326(08)60383-0
[6] Pujari K S, Patil D V, Mewundi G. Selection of GTAW process parameter and optimizing the weld pool geometry for AA7075-T6 Aluminium alloy[J]. Materials Today:Proceedings, 2018, 5(11): 25045 − 25055. doi: 10.1016/j.matpr.2018.10.305
[7] Babu S, Panigrahi S K, Ram G D J, et al. Cold metal transfer welding of aluminium alloy AA2219 to austenitic stainless steel AISI 321[J]. Journal of Materials Processing Technology, 2019, 266: 155 − 164. doi: 10.1016/j.jmatprotec.2018.10.034
[8] Yuan R, Deng S J, Cui H C, et al. Interface characterization and mechanical properties of dual beam laser welding-brazing Al/steel dissimilar metals[J]. Journal of Manufacturing Processes, 2019, 40: 37 − 45. doi: 10.1016/j.jmapro.2019.03.005
[9] Gao K, Qin X P, Wang Z, et al. Numerical and experimental analysis of 3D spot induction hardening of AISI1045 steel[J]. Journal of Materials Processing Technology, 2014, 214(11): 2425 − 2433. doi: 10.1016/j.jmatprotec.2014.05.010
[10] 黄健康,李杰,沈利民,等. Si,Mg对铝/钢熔钎焊焊接接头力学性能的影响[J]. 焊接学报, 2016, 37(8): 96 − 100. Huang Jiankang,Li Jie,Shen Limin,et al. Effects of Si and Mg on mechanical properties of aluminum-steel welded-brazed joint[J]. Transactions of the China Welding Institution, 2016, 37(8): 96 − 100.
[11] 秦优琼,焦国力. 采用AlSi5焊丝CMT熔钎焊7075铝合金/镀锌钢板接头组织及性能分析[J]. 焊接学报, 2019, 38(9): 119 − 123. Qin Youqiong,Jiao Gouli. Microstructure and mechanical property of CMT fusion-brazed joint with AlSi5 filler wire between 7075 aluminum alloy and galvanized steel sheets[J]. Transactions of the China Welding Institution, 2019, 38(9): 119 − 123.
[12] 崔凌越,米高阳,胡席远,等. 基于CuSi3焊丝的激光熔钎焊钢/铝异种金属工艺分析[J]. 焊接学报, 2018, 39(9): 6 − 12. Cui Lingyue, Mi Gaoyang, Hu Xiyuan, et al. Microstructure and mechanical properties of laser welding-brazed aluminum alloy to steel with CuSi3 filler metal[J]. Transactions of the China Welding Institution, 2018, 39(9): 6 − 12.
[13] 李剑雄,李桓,韦辉亮,等. 基于U-I图的铝/钢双脉冲MIG熔-钎焊稳定性评价及其MATLAB实现[J]. 焊接学报, 2017, 38(2): 87 − 91. Li Jianxiong, Li Huan, Wei Huiliang, et al. Evaluation of welding stability of double pulse MIG welding-brazing of aluminum to steel based on U-I graph and its realization in MATLAB[J]. Transactions of the China Welding Institution, 2017, 38(2): 87 − 91.
[14] 刘宁,黄健康,陈满骄,等. 基于蒙特卡罗方法的铝/钢熔钎焊界面金属间化合物层生长分析[J]. 焊接学报, 2016, 37(2): 55 − 58, 62. Liu Ning, Huang Jiankang, Chen Manjiao, et al. Growth analysis of intermetallic compounds on aluminum-steel MIG-brazing interface based on Monte Carlo method[J]. Transactions of the China Welding Institution, 2016, 37(2): 55 − 58, 62.
[15] Li L Q, Xia H B, Tan C, et al. Influence of laserpower on interfacial microstructure and mechanical properties of laser welded-brazed Al/steel dissimilar butted joint[J]. Journal of Manufacturing Processes, 2018, 32: 160 − 174. doi: 10.1016/j.jmapro.2018.02.002
[16] Chen S H, Li S Q, Li Y, et al. Butt welding-brazing of steel to aluminum by hybrid laser-CMT[J]. Journal of Materials Processing Technology, 2019, 272: 163 − 169. doi: 10.1016/j.jmatprotec.2019.05.018
[17] Zhou Y L, Lin Q L. Wetting of galvanized steel by Al 4043 alloys in the first cycle of CMT process[J]. Journal of Alloys and Compounds, 2014, 589: 307 − 313. doi: 10.1016/j.jallcom.2013.11.177
[18] Pouranvari M, Abbasi M. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms[J]. Journal of Alloys and Compounds, 2018, 749: 121 − 127. doi: 10.1016/j.jallcom.2018.03.224
[19] Zienert T, Leineweber A, Fabrichnaya O. Heat capacity of Fe-Al intermetallics: B2-FeAl、FeAl2、Fe2Al5 and Fe4Al13[J]. Journal of Alloys and Compounds, 2017, 725: 848 − 859. doi: 10.1016/j.jallcom.2017.07.199
[20] Cao R, Yu G, Chen J H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel[J]. Journal of Materials Processing Technology, 2013, 213(10): 1753 − 1763. doi: 10.1016/j.jmatprotec.2013.04.004
[21] Xia H B, Zhao X Y, Tan C W, et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint[J]. Journal of Materials Processing Technology, 2018, 258: 9 − 21. doi: 10.1016/j.jmatprotec.2018.03.010
[22] Tricarico L, Spina R, Sorgente D, et al. Effects of heat treatments on mechanical properties of Fe/Al explosion-welded structural transition joints[J]. Materials and Design, 2009, 30: 2693 − 2700. doi: 10.1016/j.matdes.2008.10.010
[23] Huang Y X, Wan L, Si X Q, et al. Achieving high-quality Al/steel joint with ultrastrong interface[J]. Metallurgical and Materials Transactions, 2019, 50(1): 295 − 299. doi: 10.1007/s11661-018-5006-4
-
期刊类型引用(7)
1. 尹孝辉,刘辉,嵇翔宇,独家卿,王瑞,胡磊. 马氏体相变对CMT熔覆9Cr-1Mo涂层残余应力影响的数值模拟. 过程工程学报. 2024(08): 926-936 . 百度学术
2. 权国政,石泽岩,赵江,张建生,周杰. 单层多道熔丝积材残余应力分布及锤击消除. 塑性工程学报. 2021(04): 128-135 . 百度学术
3. 詹睿,王东坡,邓彩艳,崔雷,管卫,梁行. 超声冲击对含根部缺陷铝合金FSW接头疲劳性能的影响. 焊接学报. 2021(06): 7-12+97 . 本站查看
4. 权国政,赵江,施瑞菊,刘乔. 多层熔丝增材数值模拟及残余应力控制研究. 机械科学与技术. 2020(04): 623-628 . 百度学术
5. 郭相忠,刘伟,范佳斐,李喜庆,胡立国. 完全熔透和部分熔透搭接激光焊接接头的残余应力和变形. 中国激光. 2020(05): 362-370 . 百度学术
6. 程智勇,李晓娟,陈文尉,周欢伟. 多层激光焊接接头不均匀性的微观组织和残余应力形成机理. 机电工程技术. 2020(08): 38-40+144 . 百度学术
7. 梁行,阚盈,姜云禄,陈怀宁. 不锈钢薄板激光搭接焊接头的力学性能. 中国激光. 2018(06): 48-55 . 百度学术
其他类型引用(6)