Microstructure and properties of TA2/ Co13Cr28Cu31Ni28/ Q235 pulsed TIG weld joint
-
摘要: 针对钢与钛之间因物化性能差异大,焊接过程易产生大量金属间化合物而难以实现可靠连接的问题,依据焊缝金属固溶高熵化思路,选用Co13Cr28Cu31Ni28高熵合金作为中间过渡层对TA2钛和Q235钢进行脉冲钨极氩弧焊,并对Co13Cr28Cu31Ni28高熵合金及接头的组织和性能进行分析研究. 结果表明,Co13Cr28Cu31Ni28主要是双相面心立方结构,分别为富Cu的晶间和晶内面心立方结构,强度和塑性良好;焊接接头两部分焊缝均成形良好,无气孔、裂纹等缺陷,焊缝组织均为简单的固溶体结构,Q235侧焊缝主要为面心立方结构相,TA2侧焊缝主要由简单的体心立方结构和面心立方结构相构成,以体心立方结构相为主;焊接接头抗拉强度为224 MPa,在TA2侧靠近高熵合金的熔合线处断裂,主要由于生成了脆性的Cr3O8,断口有较多韧窝和一部分解理面,为混合断裂,表现出一定的韧性断裂特征.Abstract: Due to the significant difference in physical and chemical properties between steel and titanium, a large number of intermetallic compounds are formed in the weld, which makes it difficult to achieve reliable connections. According to the idea of solid dissolution and high entropy of weld metal, Co13Cr28Cu31Ni28 high entropy alloy was selected as an intermediate transition layer for pulse tungsten inert gas welding of TA2 titanium and Q235 steel, the microstructure and properties of Co13Cr28Cu31Ni28 high entropy alloy and the weld joint were analyzed and studied. The results show that Co13Cr28Cu31Ni28 mainly has a two-phase face-centered cubic structure (FCC),which is cu-rich intercrystalline FCC phase and intra crystalline FCC phase, and its strength and plasticity are good. The welded joint is formed well, without stomals, cracks and other defects. The weld microstructure is composed of simple solid solution structures, which are mainly FCC phases on the Q235 side, and mainly body-centered cubic structure (BCC) and FCC phases on the TA2 side, mainly composed of BCC phases. The tensile strength of the welded joint is 224 MPa, broken at the fusion zone near the high entropy alloy on the TA2 side, this is mainly due to the formation of brittle Cr3O8. Many dimples and cleavage planes are observed on the fracture port, which shows certain tough fracture characteristics.
-
Keywords:
- TA2 titanium /
- Q235 steel /
- high entropy alloy /
- pulse TIG welding /
- microstructure and properties
-
-
图 2 中间层髙熵合金及焊接接头的微观组织
Figure 2. Microstructure of high entropy alloy interlayer and weld joint. (a) interlayer of Co13Cr28Cu31Ni28; (b) fusion boundary adjacent to Q235; (c) center of weld(WZ1); (d) fusion boundary(WZ1) adjacent to Co13Cr28Cu31Ni28; (e) fusion boundary adjacent to TA2; (f) fusion boundary(WZ2) adjacent to Co13Cr28Cu31Ni28; (g) center of weld(WZ2); (h) enlarged view of region N in Fig. 2g; (i) enlarged view of region M in Fig. 2f
表 1 焊接工艺参数
Table 1 Welding process parameters
焊接位置 峰值电流
I/A占空比
D(%)脉冲频率
f /Hz焊接速度
v /(mm·s−1)氩气流量
Q /(L·min−1)过渡层Q235侧 150 53 2 1.4 20 过渡层TA2侧 110 50 2 1.5 20 表 2 Co13Cr28Cu31Ni28 EDS分析结果(原子分数,%)
Table 2 EDS analysis results of Co13Cr28Cu31Ni28
测点 Cu Cr Ni Co A 9.3 36.9 34.5 19.3 B 80.6 3.9 8.9 6.6 表 3 WZ1区域EDS点成分分析结果(原子分数,%)
Table 3 EDS point component analysis results of WZ1 region
位置 Fe Cu Cr Ni Co I 31.5 17.8 21.3 19.2 9.6 II 32.9 16.5 19.2 18.3 13.1 III 32.2 17.3 20.6 19.1 10.2 平均值 32.2 17.2 20.37 18.87 10.97 表 4 WZ2区域EDS分析结果(原子分数,%)
Table 4 EDS analysis results of WZ2 region
位置 Ti Cu Cr Ni Co 1 51.3 16.8 9.3 14.9 7.7 2 63.3 18.8 8.9 7.0 2.0 3 37.9 19.3 6.5 18.3 8.0 4 28.9 29.1 8.7 25.6 7.7 5 5.8 3.6 85.8 2.7 2.1 6 34.3 19.8 17.3 18.9 7.7 7 28.9 29.1 11.7 22.3 7.0 -
[1] 刘全明, 龙伟民, 傅莉, 等. 氢致TA10钛合金焊接接头拉伸性能演变[J]. 焊接学报, 2020, 41(12): 20 − 24. Liu Quanming, Long Weimin, Fu Li, et al. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. Transactions of the China Welding Institution, 2020, 41(12): 20 − 24.
[2] 房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 87 − 92. Fang Zhonghang, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 87 − 92.
[3] 刘坤, 李亚江, 王娟, 等. 填丝TIG焊TA15钛合金与18-8钢接头的微观组织[J]. 焊接学报, 2017, 38(2): 57 − 60. Liu Kun, Li Yajiang, Wang Juan, et al. Microstructure of TA15 alloy and 18-8 stainless steel joint by TIG with filler metal[J]. Transactions of the China Welding Institution, 2017, 38(2): 57 − 60.
[4] Ghosh M, Das S, Banarjee P S. Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple[J]. Materials Science & Engineering A, 2005, 390(1): 217 − 226.
[5] Shiue R K, Wu S K, Shiue J Y, et al. Infrared brazing of Ti-6Al-4V and 17-4 PH stainless steel with (Ni)/Cr barrier layer(s)[J]. Materials Science and Engineering A, 2008, 488(1): 186 − 194.
[6] Isaev V I, Cherepanov A N, Shapeev V P. Numerical study of heat modes of laser welding of dissimilar metals with an intermediate insert[J]. International Journal of Heat and Mass Transfer, 2016, 99: 711 − 720. doi: 10.1016/j.ijheatmasstransfer.2016.04.019
[7] Wang T, Zhang B G, Wang H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1498 − 1504. doi: 10.1007/s11665-014-0897-8
[8] Yuan X J, Tang K, Deng Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials and Design, 2013, 52: 359 − 366. doi: 10.1016/j.matdes.2013.05.057
[9] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61(4): 1 − 93.
[10] 侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015. Hou Guangyuan. Research on TIG welding of titanium/steel based on high entropy of weld metal [D]. Xi'an: Xi'an University of Technology, 2015.
[11] Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
[12] 翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9储能焊接头组织与性能[J]. 焊接学报, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001 Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. Microstructure and properties of Ta1/Ta8Ni30Cr20Cu42/0Cr18Ni9 energy storage welding joint[J]. Transactions of the China Welding Institution, 2020, 41(10): 60 − 64. doi: 10.12073/j.hjxb.20200822001
[13] Kulkarni R, Murty B S, Srinivas V. Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy[J]. Journal of Alloys and Compounds, 2018, 746: 194 − 199. doi: 10.1016/j.jallcom.2018.02.275
[14] Zhang M, Zhang L, Fan J, et al. Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content[J]. Materials Science and Engineering A, 2018, 733: 299 − 306. doi: 10.1016/j.msea.2018.07.069
[15] Xin Xian, Lin Lijing, Zhong Zhihong, et al. Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys[J]. Materials Science & Engineering A, 2018, 713: 134 − 140.
[16] Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys & Compounds, 2013, 553: 216 − 220.
-
期刊类型引用(0)
其他类型引用(1)