高级检索

氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能

仲杨, 郑志镇, 李建军, 张华

仲杨, 郑志镇, 李建军, 张华. 氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能[J]. 焊接学报, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
引用本文: 仲杨, 郑志镇, 李建军, 张华. 氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能[J]. 焊接学报, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005
Citation: ZHONG Yang, ZHENG Zhizhen, Li Jianjun, ZHANG Hua. Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 7-17. DOI: 10.12073/j.hjxb.20210421005

氮气辅助316L不锈钢激光-MIG复合焊接组织与耐蚀性能

基金项目: 国家重点研发计划(2018YFB1106501,2018YFB1106505)
详细信息
    作者简介:

    仲杨,博士;主要从事激光-电弧复合焊接方面的科研工作;Email: d201980305@hust.edu.cn

    通讯作者:

    郑志镇,教授;Email:zzz@mail.hust.edu.cn.

  • 中图分类号: TG 456.7

Microstructure and corrosion resistance of laser-MIG 316L stainless steel under the nitrogen assistance

  • 摘要: 为了提高纯氩气下MIG焊接316L不锈钢的稳定性、改善焊缝组织以及强化耐腐蚀性能,引入1 200 W小功率激光对MIG电弧进行诱导压缩,同时在氩气中混入氮气,探索不同流量比的Ar-N2混合气体对焊缝微观组织及其耐腐蚀性能的影响. 结果表明,激光的诱导作用能够收缩并稳定MIG电弧,随着氮气流量的增加,焊缝的熔合线逐渐平缓,内部气孔缺陷明显降低;XRD测试和显微组织分析发现,渗氮后的焊缝内部γ相含量明显增多,中下部区域均为细小均匀的γ胞状晶,中上部区域为γ树枝晶,并且一次枝晶间距逐渐减小. 当氮气流量增加到5 L/min,焊缝的显微硬度可综合提升20 HV;电化学极化测试发现,渗氮之后的焊缝表现出更强的耐腐蚀性能. 试验证实,氮气辅助激光-MIG复合焊接工艺能够改善316L不锈钢焊缝的显微组织和耐腐蚀性能,当Ar∶N2气体流量比为20∶5时,γ相的强化效果最显著,综合耐腐蚀性能最好.
    Abstract: In order to enhance the MIG arc stability, improve the internal microstructure and strengthen the corrosion resistance of 316L stainless steel weldments manufactured by MIG under the pure argon gas, a 1 200 W low power laser was introduced to induce compression on the MIG arc, with N2 mixed into Ar to explore the effect of Ar-N2 mixed shielding gas with different flow rates on the microstructure and corrosion resistance of the 316L welding seam. Experimental observations display that the MIG arc became more stable under the induced effect of 1 200 W laser. With the increase of N2 gas flow rate, the fusion line of the molted pool become smoother and the internal porosity defects are significantly reduced. XRD tests and microstructure observations indicate that the content of internal γ-phase increase significantly. It can be clearly seen that most fine cellular γ phase distributed uniformly in the lower middle regions of the molted pool, and the upper middle regions were dendritic γ phase, with its primary dendrite spacing gradually decreased. As the N2 gas flow rate increase to 5 L/min, the micro-hardness of the welding seam could be enhanced by 20 HV. Electrochemical polarization tests revealed that the Laser-MIG 316L welding seam formed under the Ar-N2 mixed gas exhibit stronger corrosion resistance. Above experiments confirmed that the N2-assisted laser-MIG hybrid welding technology can improve the microstructure and corrosion resistance of 316L stainless steel weldments, and when the Ar : N2 gas flow rate is 20 : 5, the strengthening effect of γ phase is most significant and the best corrosion resistance can be achieved comprehensively.
  • 图  1   激光-MIG复合焊接工艺示意图

    Figure  1.   Schematic diagram of laser-MIG hybrid welding technology

    图  2   用于电化学测试的纵向焊道工作电极选区示意图

    Figure  2.   Schematic diagram of welded zone selected as working electrode for electrochemical tests. (a) cross welding; (b) longitudinal welding

    图  3   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢焊道的表面形貌

    Figure  3.   Macroscopic of 316L stainless steel welding bead formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  4   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢横向焊缝组织形貌

    Figure  4.   Microstructure of 316L transverse welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) cross section; (b) upper middle region; (c) middle region; (d) lower middle region

    图  5   MAG焊(80%Ar-20%CO2)316L不锈钢横向焊缝组织形貌

    Figure  5.   Microstructure of 316L transverse welding seam formed by MAG welding under the 80%Ar-20%CO2 shielding gas. (a) lower middle region;(b) middle region;(c) bottom region;(d) fusion line

    图  6   不同Ar- N2气流量比下的激光-MIG复合焊接316L不锈钢纵向焊缝组织图

    Figure  6.   Microstructure of 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) top region;(b) upper middle region;(c) middle region;(d) lower middle region

    图  7   不同Ar-N2气流量比的激光-MIG复合焊接316L不锈钢纵向焊缝X射线衍射图

    Figure  7.   XRD patterns of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  8   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的显微硬度

    Figure  8.   Vickers hardness of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  9   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的开路电位曲线

    Figure  9.   Open circuit curves of 316L longitudinal welding seam formed by laser-MIG hybrid welding under the different flow rate ratios of Ar-N2 shielding gas

    图  10   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢的纵向焊缝电化学阻抗图

    Figure  10.   Electrochemical impedance spectroscopy of the 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas. (a) Nyquist; (b) Bode plot

    图  11   316L纵向焊缝在3.5% NaCl溶液中的等效电路

    Figure  11.   Simplified equivalent circuit of 316L longitudinal welding seam in 3.5% NaCl solution

    图  12   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝的动电位极化曲线

    Figure  12.   Dynamic cycle polarization curves of 316L stainless steel longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  13   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢纵向焊缝点蚀电位与自腐蚀电位

    Figure  13.   Epit and Ecorr of the 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    图  14   激光-MIG复合焊接316L钢熔池的吸氮与脱氮

    Figure  14.   Schematic of nitrogen absorption and desorption during the 316L laser-MIG hybrid welding process.

    表  1   Bohler 316L不锈钢焊丝的化学成分(质量分数,%)

    Table  1   Chemical composition of Bohler 316L stainless steel solid wire

    CSiMnCrNiMoPSCuFe
    0.0150.451.618.512.02.60.0170.0070.04余量
    下载: 导出CSV

    表  2   不同Ar-N2气体流量比的激光-MIG复合焊接316L不锈钢焊道尺寸

    Table  2   Dimensions of 316L stainless steel welding bead formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar∶N2
    气体流量比
    熔宽
    W/mm
    熔深
    H/mm
    余高
    h/mm
    24∶17.933.782.80
    22.5∶2.57.853.672.59
    20∶57.613.702.66
    17.3∶7.77.493.662.78
    下载: 导出CSV

    表  3   不同Ar-N2气体流量比的纵向焊缝顶部区域树枝状晶的一次枝晶间距和二次枝晶间距

    Table  3   Primary dendrite spacing and secondary dendrite spacing of dendritic crystals in the top region of the longitudinal welding seam formed under the different flow rate ratios of Ar-N2 shielding gas

    Ar : N2
    气体流量比
    一次枝晶间距
    S1 / μm
    二次枝晶间距
    S2/ μm
    24 : 121.387.46
    22.5 : 2.518.307.74
    20 : 516.626.96
    17.3 : 7.712.087.32
    下载: 导出CSV

    表  4   不同Ar-N2气流量比下的激光-MIG复合焊接316L纵向焊缝的电化学阻抗谱参数

    Table  4   Electrochemical impedance spectroscopy parameters of 316L longitudinal welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar : N2
    气体流量比
    溶液电阻
    Rs/(Ω·cm2)
    电荷转移电阻
    Rp/(kΩ·cm2)
    比例系数
    Y0/10−6−1·cm−2·sn)
    经验系数
    n
    双电层电容
    Cdl/(μF·cm−2)
    24 : 125.235.0764.810.8419.08
    22.5 : 2.518.117.2545.150.8715.60
    20 : 524.268.4449.100.8921.36
    17.3 : 7.725.496.3058.040.8518.37
    下载: 导出CSV

    表  5   不同Ar-N2气体流量比的激光-MIG电弧复合焊接316L不锈钢纵向焊道的动电位循环极化曲线

    Table  5   Dynamic cycle polarization curves of the welding seam formed by laser-MIG hybrid welding technology under the different flow rate ratios of Ar-N2 shielding gas

    Ar∶N2
    气流量比
    自腐蚀电位
    Ecorr/V
    自腐蚀电流
    Icorr/(10−7A·cm−2)
    点蚀电位
    Epit/V
    再钝化电位
    Erep/V
    电位误差
    (EpitEcorr)/V
    电位误差
    (Erep Ecorr)/V
    24∶1−0.0575.310.516−0.098 80.573−0.041 8
    22.5∶2.5−0.0764.550.575−0.138 60.651−0.062 6
    20∶5−0.1597.431.203−0.091 71.3620.067 3
    17.3∶7.7−0.1230.5351.047−0.10111.1700.021 9
    下载: 导出CSV
  • [1]

    Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Materials Science and Engineering:A, 2020, 772: 138633. doi: 10.1016/j.msea.2019.138633

    [2]

    Chen X, Li J, Cheng X, et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering:A, 2017, 703: 567 − 577. doi: 10.1016/j.msea.2017.05.024

    [3]

    Zhu Zhengwu, Ma Xiuquan, Wang Chunming, et al. Grain refinement and orientation alternation of 10 mm 316L welds prepared by magnetic field assisted narrow gap laser-MIG hybrid welding[J]. Materials Characterization, 2020, 164: 110311. doi: 10.1016/j.matchar.2020.110311

    [4] 陈志伟, 马程远, 陈波, 等. 激光-MIG复合焊接中厚度不锈钢组织及性能研究[J]. 激光与光电子学进展, 2020, 57(23): 213 − 220.

    Chen Zhiwei, Ma Chengyuan, Chen Bo, et al. Study on microstructure and properties of medium-thick stainless steel by laser-MIG hybrid welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 213 − 220.

    [5] 李旭文, 宋刚, 张兆栋, 等. 激光诱导电弧复合增材制造316L不锈钢的组织和性能[J]. 中国激光, 2019, 46(12): 101 − 109.

    Li Xuwen, Song Gang, Zhang Zhaodong, et al. Microstructure and properties of 316L stainless steel produced by laser-induced arc hybrid additive manufacturing[J]. Chinese Journal of Lasers, 2019, 46(12): 101 − 109.

    [6]

    Hänninen H, Romu J, Ilola R, et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties[J]. Journal of Materials Processing Technology, 2001, 117(3): 424 − 430. doi: 10.1016/S0924-0136(01)00804-4

    [7]

    Ming Zhu, Wang Kehong, Liu Zeng. Effect of the cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metals[J]. China Welding, 2020, 29(2): 48 − 52.

    [8]

    Li D, Yang D, Zhang G, et al. Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding[J]. Journal of Manufacturing Processes, 2018, 35: 190 − 196. doi: 10.1016/j.jmapro.2018.07.026

    [9]

    Reyes-Hernández D, Manzano-Ramírez A, Encinas A, et al. Addition of nitrogen to GTAW welding duplex steel 2205 and its effect on fatigue strength and corrosion[J]. Fuel, 2017, 198: 165 − 169. doi: 10.1016/j.fuel.2017.01.008

    [10]

    Feng H, Li H, Wu X, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1781 − 1790.

    [11]

    Fu Y, Wu X, Han E H, et al. Effects of nitrogen on the passivation of nickel-free high nitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta, 2009, 54(16): 4005 − 4014. doi: 10.1016/j.electacta.2009.02.024

    [12]

    Metikoš-Huković M, Babić R, Grubač Z, et al. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution[J]. Corrosion Science, 2011, 53(6): 2176 − 2183. doi: 10.1016/j.corsci.2011.02.039

    [13]

    Ribic B, Palmer T A, DebRoy T. Problems and issues in laser-arc hybrid welding[J]. International Materials Reviews, 2009, 54(4): 223 − 244. doi: 10.1179/174328009X411163

    [14]

    Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing[J]. Materials Science and Engineering:A, 2020, 796: 140006. doi: 10.1016/j.msea.2020.140006

    [15]

    Wu W, Xue J, Wang L, et al. Forming process, microstructure, and mechanical properties of thin-walled 316L stainless steel using speed-cold-welding additive manufacturing[J]. Metals, 2019, 9(1): 109. doi: 10.3390/met9010109

    [16] 鲍亮亮, 王勇, 张洪杰, 等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J]. 焊接学报, 2021, 42(3): 26-33.

    Bao Liangliang, Wang Yong, Zhang Hongjie, et al. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J] Transactions of the China Welding Institution, 2021, 42(3): 26-33.

    [17] 王子然, 左善超, 张善保, 等. 硅对304不锈钢GMAW高速焊接头组织性能的影响[J]. 焊接学报, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001

    Wang Ziran, Zuo Shanchao, Zhang Shanbao, et al. Effect of silicon on microstructure and properties of highspeed GMAW welded joint of 304 stainless steel[J]. Transactions of the China Welding Institution, 2020, 41(2): 18 − 23. doi: 10.12073/j.hjxb.20190912001

    [18]

    Wu C, Li S, Zhang C, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science, 2016, 51(5): 2529 − 2539. doi: 10.1007/s10853-015-9565-0

    [19]

    Kong D, Dong C, Ni X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. Journal of Materials Science & Technology, 2019, 35(7): 1499 − 1507.

    [20]

    Chen L, Liu W, Dong B, et al. Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: effect of tensile elastic stress[J]. Corrosion Science, 2021, 193: 109903.

    [21]

    Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media[J]. Materialia, 2018, 2: 111 − 121. doi: 10.1016/j.mtla.2018.06.015

    [22]

    Zhang Y, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting[J]. Corrosion Science, 2020, 163: 108241. doi: 10.1016/j.corsci.2019.108241

    [23]

    Jiang Z, Feng H, Li H, et al. Relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures[J]. Materials, 2017, 10(8): 861. doi: 10.3390/ma10080861

    [24]

    Fellman A, Kujanpää V. The effect of shielding gas composition on welding performance and weld properties in hybrid CO2 laser–gas metal arc welding of carbon manganese steel[J]. Journal of Laser Applications, 2006, 18(1): 12 − 20. doi: 10.2351/1.2164481

    [25]

    Mu Z, Chen X, Zheng Z, et al. Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel[J]. International Journal of Heat and Mass Transfer, 2019, 132: 861 − 870. doi: 10.1016/j.ijheatmasstransfer.2018.12.050

    [26]

    Hertzman S, Jarl M. A thermodynamic analysis of the Fe-Cr-N system[J]. Metallurgical Transactions A, 1987, 18(10): 1745 − 1752. doi: 10.1007/BF02646206

    [27]

    Kah P, Martikainen J. Influence of shielding gases in the welding of metals[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12): 1411 − 1421. doi: 10.1007/s00170-012-4111-6

    [28]

    Suutala N, Takalo T, Moisio T. Ferritic-austenitic solidification mode in austenitic stainless steel welds[J]. Metallurgical Transactions A, 1980, 11(5): 717 − 725. doi: 10.1007/BF02661201

    [29]

    Li H, Jiang Z, Yang Y, et al. Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517 − 524. doi: 10.1016/S1674-4799(09)60090-X

图(14)  /  表(5)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  45
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回