Microstructures and mechanical properties of Inconel 690/S32101 dissimilar lap joints
-
摘要: 采用氩弧焊将镍基Inconel 690合金覆板以搭接的形式,焊接于新型乏燃料水池材料双相不锈钢S32101的表面,并对比自熔焊和填充焊两种工艺对接头显微组织及力学性能的影响. 结果表明,在合理的工艺条件下,两种工艺均可以获得成形良好的搭接接头,但填充焊可得到更大的搭接宽度,其抗拉强度最高可达538 MPa. 焊后检测发现,焊缝组织主要由胞状晶所组成,其间分布有颗粒状铁素体析出物. 两侧熔合线处呈现不同的结晶形貌,Inconel 690覆板侧具有明显的外延生长组织,而S32101侧则出现平面晶结构. 与自熔焊相比,填充焊热影响区中奥氏体溶解现象仅出现在熔合线附近极小的范围内.Abstract: The GTAW (gas tungsten arc welding) was employed to weld Inconel 690 nickel-based alloy overlay plate and S32101 duplex stainless-steel, a new type material for fabricating spent fuel pool, with lap joint. Microstructures and mechanical properties of the joints fabricated with autogenous welding and filler welding were comparative studied. Compared with autogenous welding, a sound bead, with larger lap width and the tensile strength of 538 MPa, was obtained by filler welding under the optimized welding parameters. The welds were characteristic of cellular grains and fine ferritic precipitates dispersed among them. Different solidification microstructures were presented at fusion boundaries within weld. Epitaxial growth can be observed in the side of Inconel 690 and planar growth in the other side. Austenite dissolution range in the heat affected zone of the filler welding is narrower than that of autogenous welding.
-
-
图 2 Inconel 690/S32101异种合金搭接接头的显微组织
Figure 2. Microstructures of the Inconel 690/S32101 dissimilar lap joint. (a) base metal of Inconel 690 and S32101; (b) fusion boundary adjacent to Inconel 690; (c) fusion boundary adjacent to S32101 of autogenous welding; (d) fusion boundary adjacent to S32101 of filler welding
表 1 母材和焊丝的化学成分(质量分数,%)
Table 1 Compositions of the base metals and welding wire
材料 C Fe Ni Cr Mn Mo Si P S N 其它 底板S32101 0.025 70.67 1.54 21.63 4.88 0.18 0.54 0.020 0.001 0.20 0.314 覆板Inconel 690 0.016 10.50 58.00 29.66 0.30 0.05 0.10 0.005 0.001 0 − 1.368 焊丝Inco-52M 0.024 8.67 59.16 30.08 0.79 0.01 0.08 0.003 0.000 8 − 1.182 2 -
[1] 邓天红. 某核电厂乏燃料水池覆面焊接变形分析及处理[J]. 焊接技术, 2013, 42(2): 56 − 59. doi: 10.3969/j.issn.1002-025X.2013.02.016 Deng Tianhong. Analysis and treatment of liner welding deformation in the spent fuel pit in a nuclear power plant[J]. Welding Technology, 2013, 42(2): 56 − 59. doi: 10.3969/j.issn.1002-025X.2013.02.016
[2] 李锴, 钟志民, 孟令强. 压水堆核电厂乏燃料水池失效分析与预防初探[J]. 金属热处理, 2019, 44(S1): 435 − 440. Li Kai, Zhong Zhimin, Meng Lingqiang. Spent fuel pool failure analysis and protection research for PWR nuclear power plant[J]. Heat Treatment of Metals, 2019, 44(S1): 435 − 440.
[3] 赵迪, 李光福, 钟志民. 核电厂水池用不锈钢的腐蚀问题及相关研究[J]. 腐蚀与防护, 2020, 41(9): 10 − 15. doi: 10.11973/fsyfh-202009002 Zhao Di, Li Guangfu, Zhong Zhimin. Corrosion of stainless steels for water pools of nuclear power plants and relevant researches[J]. Corrosion & Protection, 2020, 41(9): 10 − 15. doi: 10.11973/fsyfh-202009002
[4] 卞向南, 邵长磊, 张晓春, 等. 基于激光焊接技术的水下焊缝修复系统研究[J]. 机械研究与应用, 2020, 33(6): 52 − 54. Bian Xiangnan, Shao Changlei, Zhang Xiaochun, et al. Research on the underwater weld repair system based on laser welding technology[J]. Mechanical Research & Application, 2020, 33(6): 52 − 54.
[5] 王振民, 谢芳祥, 冯允樑, 等. 水下机器人局部干法焊接系统[J]. 焊接学报, 2017, 38(1): 5 − 8. Wang Zhenmin, Xie Fangxiang, Feng Yunliang, et al. Underwater robot local dry welding system[J]. Transactions of the China Welding Institution, 2017, 38(1): 5 − 8.
[6] 向林涛, 陈国栋, 张攀峰, 等. 水下焊接机器人弧线轨迹平顺运动控制策略[J]. 焊接学报, 2018, 39(6): 104 − 109. Xiang Lintao, Chen Guodong, Zhang Panfeng, et al. A smooth trajectory motion control strategy of underwater welding robot[J]. Transactions of the China Welding Institution, 2018, 39(6): 104 − 109.
[7] 郭伟, 郭宁, 杜永鹏, 等. 不同水下环境介质对水下焊接电弧等离子体成分及温度的影响[J]. 焊接学报, 2016, 37(10): 13 − 16. Guo Wei, Guo Ning, Du Yongpeng, et al. Effect of different underwater environment media on composition and temperature of underwater welding arc plasma[J]. Transactions of the China Welding Institution, 2016, 37(10): 13 − 16.
[8] 庄源, 黄忠平, 史寅康, 等. 一种新型核电站建设材料—双相不锈钢[J]. 热加工工艺, 2012, 41(18): 69 − 71. Zhuang Yuan, Huang Zhongping, Shi Yinkang, et al. New material in nuclear power plant construction: duplex stainless steel[J]. Hot Working Technology, 2012, 41(18): 69 − 71.
[9] Kou S. Welding metallurgy[M]. Hoboken: Wliley-Interscience, 2002.
[10] Lippold J C, Kotecki D J. Welding metallurgy and weldability of stainless steels[M]. Hoboken: Wiley & Sons, 2005.
[11] 郭枭, 何鹏, 徐锴, 等. 一种核电用镍基合金焊丝熔敷金属的组织与性能[J]. 焊接学报, 2020, 41(4): 26 − 30. doi: 10.12073/j.hjxb.20191120002 Guo Xiao, He Peng, Xu Kai, et al. Microstructure and mechanical properties of deposited metal for nuclear plant nickel alloy welding wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 26 − 30. doi: 10.12073/j.hjxb.20191120002
-
期刊类型引用(9)
1. 关皓真,张裕,孙磊,吴艳明. 脉冲熔化极气体保护焊弧长神经网络建模及参数预测. 材料开发与应用. 2024(03): 28-35 . 百度学术
2. 王超,陈信宇,吴春彪,李雷,王洁. 基于快速蜜蜂试验法的304不锈钢激光焊工艺优化. 焊接学报. 2023(02): 102-110+135 . 本站查看
3. 杜晓辉,陈凡红,刘帅,朱敏杰,许佳豪. 压力传感器波纹膜片低应力激光焊接工艺. 光学精密工程. 2023(11): 1652-1659 . 百度学术
4. 杨华庆,张建护,唐德渝,王克宽. 机器人立体视觉系统标定误差预测补偿技术. 控制工程. 2022(04): 757-762 . 百度学术
5. 朱胜,张雨豪,郭迎春,王晓明,常青,赵阳. 高能微弧沉积H65黄铜涂层试验研究. 热加工工艺. 2021(14): 102-104+108 . 百度学术
6. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 . 百度学术
7. 刘晓明,刘威,李龙女,朱高嘉,姜文涛. 基于改进神经网络和遗传算法的真空灭弧室优化设计. 真空科学与技术学报. 2020(04): 359-364 . 百度学术
8. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 . 百度学术
9. 尹燕,赵超,潘存良,路超,张瑞华. 气体流量对射频等离子体球化GH4169合金粉末的影响. 焊接学报. 2019(11): 100-105+165 . 本站查看
其他类型引用(9)