高级检索

空间多位置摆动激光填丝焊接熔池动态行为及焊缝成形

Research on molten pool dynamic behavior and weld formation of transverse oscillating laser welding process for various positions in space

  • 摘要: 以316L奥氏体不锈钢管道为研究对象,在摆动激光焊接研究基础上,对管道多位置激光填丝焊接熔滴过渡和焊缝成形展开研究,分析焊接熔池动态特征,优化各位置区间工艺参数,进而实现管道全位置激光焊接. 结果表明,摆动激光束周期性的作用于填充焊丝,产生的反冲压力能够促进熔滴过渡,使得焊丝始终以“液桥”形式向熔池过渡;同时摆动激光增强了熔融金属侧向流趋势,提高熔池界面表面张力,削弱空间多位置下重力对熔池形貌的影响,保证各空间位置熔池均能稳定存在,焊缝成形连续均匀.

     

    Abstract: 316L austenite pipeline was used as experimental materials. Based on oscillating laser welding, the droplet transfer and weld morphology at various spatial positions were studied, and the molten pool characteristics and formation process were analyzed to optimize welding parameters, achieving pipeline all-position beam wobble lase wire feeding welding. The results show that transverse oscillating laser beam periodically irradiates on filler wire, it primarily provides a recoil force to promote droplet transfer in the form of liquid bridge transition. Meanwhile, oscillating laser beam increases lateral flowing trend of molten weld metal, increasing surface tension force at molten pool edge. The effect of gravity on molten pool is weakened, ensuring the stable existence of liquid metal at various welding positions. The weld surface formation is continuous and uniform.

     

/

返回文章
返回