高级检索

小孔型等离子弧焊接条形气孔形成机理

忻建文, 吴东升, 李芳, 张跃龙, 王欢, 华学明

忻建文, 吴东升, 李芳, 张跃龙, 王欢, 华学明. 小孔型等离子弧焊接条形气孔形成机理[J]. 焊接学报, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
引用本文: 忻建文, 吴东升, 李芳, 张跃龙, 王欢, 华学明. 小孔型等离子弧焊接条形气孔形成机理[J]. 焊接学报, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003
Citation: XIN Jianwen, WU Dongsheng, LI Fang, ZHANG Yuelong, WUANG Huan, HUA Xueming. Formation mechanism of elongated cavities in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 54-61. DOI: 10.12073/j.hjxb.20210414003

小孔型等离子弧焊接条形气孔形成机理

基金项目: 工业和信息化部高技术和船舶科研计划资助项目(薄膜型围护系统(MARK III型)材料应用研究)
详细信息
    作者简介:

    忻建文,博士研究生;从事等离子弧焊相关研究; Email:xinjianwen@sjtu.edu.cn

    通讯作者:

    华学明,教授; Email:xmhua@sjtu.edu.cn.

  • 中图分类号: TG 444

Formation mechanism of elongated cavities in keyhole plasma arc welding

  • 摘要: 等离子弧焊接中厚钢板时,常存在焊接工艺窗口窄问题. 在中厚不锈钢板小孔型等离子弧焊(keyhole plasma arc welding,K-PAW )中发现,离子气体流量较弱而使匙孔未打开,形成盲孔时,会在焊缝内产生平行于焊接方向的长条形气孔,形成条形气孔时,等离子弧形态发生明显变化,电弧面积增加且波动更为剧烈,出现向后的反射. 使用高速摄影装置研究了条形气孔的形成过程.结果表明,中厚板等离子弧焊中,条形气孔是在一定的焊接速度和较低的电弧能量下,熔池前壁倾角较大,等离子弧受熔池前壁反射作用冲击熔池后壁,使熔池后壁发生弯曲,并在一定的凝固条件下保留,产生平行长气孔. 对条形气孔的研究有助于为匙孔等离子弧焊接中匙孔形成条件及机制提供新认识.
    Abstract: Narrow welding process window often impedes plasma arc welding of medium - thick plate. In keyhole plasma arc welding (K-PAW), it is found that if the keyhole is not opened due to the weak ionic gas flow rate and the blind hole is formed, an elongated cavity parallel to the welding direction will be generated in the weld. When the cavity is formed, the morphology of plasma arc changes obviously. The arc area increases and fluctuates more violently, causing backward reflection. The formation process of elongated cavities was studied by high-speed camera. Experimental results show that the formation processs of elongated cavities is as follows: at a certain welding speed and a low arc energy, the dip angle of the front wall of the molten pool is enlarged, and the plasma arc reflected by the front wall will impact the back side, which would be bended and retained under solidification, then an elongated cavity exists. The study of elongated cavities is helpful to provide a new understanding of keyhole formation conditions and mechanism in keyhole plasma arc welding.
  • 图  1   等离子弧焊接系统与热成像装置

    Figure  1.   Plasma arc welding system and thermal imaging device

    图  2   嵌入透明石英玻璃的等离子弧焊高速摄影试验装置

    Figure  2.   PAW high-speed photographic system with transparent quartz glass

    图  3   焊缝X射线缺陷检测结果. (a) I = 200 A, Q = 2. 5 L/min; (b) I = 200 A, Q = 3. 5 L/min; (c) I = 220 A, Q = 1. 5 L/min; (d) I = 220 A, Q = 2. 5 L/min; (e) I = 220 A, Q = 3. 5 L/min; (f) I = 240 A, Q = 1. 5 L/min; (g) I = 240 A, Q = 2. 5 L/min; (h) I = 240 A, Q = 3. 5 L/min; (i) 图3d局部放大; (j) 图3e局部放大

    Figure  3.   X-ray inspection results of weld defects. (a) I = 200 A, Q = 2. 5 L/min; (b) I = 200 A, Q = 3. 5 L/min; (c) I = 220 A, Q = 1. 5 L/min; (d) I = 220 A, Q = 2. 5 L/min; (e) I = 220 A, Q = 3. 5 L/min; (f) I = 240 A, Q = 1. 5 L/min; (g) I = 240 A, Q = 2. 5 L/min; (h) I = 240 A, Q = 3. 5 L/min; (i) local enlargment of Fig. 3d; (j) local enlargment of Fig. 3e

    图  4   熔池侧面热成像结果

    Figure  4.   Thermal imaging results of molten pool. (a) I = 220 A, Q = 1.5 L/min; (b) I = 220 A, Q = 2.5 L/min; (c) I = 220 A, Q = 3.5 L/min

    图  5   正面电弧形态拍摄与识别. (a)经黑白化的电弧照片;(b)二值化后的电弧轮廓,边缘周期性移动;(c)二值化后的电弧轮廓,边缘周期性移动;(d)二值化后的电弧轮廓,边缘周期性移动;(e)二值化后的电弧轮廓,与图5b相对应;(f)二值化后的电弧轮廓,与图 5c相对应;(g)二值化后的电弧轮廓,与图5d相对应

    Figure  5.   Filming and recognition of PAW arc shape. (a) gray scale image of arc; (b) binarized arc contour with periodic edge movement; (c) binarized arc contour with periodic edge movement; (d) binarized arc contour with periodic edge movement; (e) binarized arc contour, corresponding to Fig. 5b; (f) binarized arc contour, corresponding to Fig. 5c; (g) binarized arc contour, corresponding to Fig. 5d

    图  6   透过透明玻璃获得的高速摄影结果(I = 220 A, Q = 1.5 L/min)

    Figure  6.   High-speed photography results with transparent glass (I = 220 A, Q = 1.5 L/min)

    图  7   透过透明玻璃获得的高速摄影结果(I = 220 A, Q = 2.5 L/min)

    Figure  7.   High-speed photography results with transparent glass (I = 220 A, Q = 2.5 L/min)

    图  8   透过透明玻璃获得的高速摄影结果(I = 220 A, Q = 3.5 L/min)

    Figure  8.   High-speed photography results with transparent glass (I = 220 A, Q = 3.5 L/min)

    图  9   不同离子气体流量下,等离子弧焊在透明玻璃辅助下的高速摄影结果对比

    Figure  9.   Comparison of high speed photography results of plasma arc welding under different ion gas flow rate assisted by transparent glass. (a) I = 220 A, Q = 1.5 L/min; (b) I = 220 A, Q = 2.5 L/min; (c) I = 220 A, Q = 3.5 L/min

    图  10   中厚板盲孔等离子弧焊接中条形气孔形成过程示意图

    Figure  10.   Diagram of forming process of elongated cavities in medium stainless steel plate plasma arc welding. (a) keyhole formation process; (b) front wall inclined, plasma flow impacted the rear wall; (c) elongated cavity formed in the solidification process

    表  1   8 mm不锈钢等离子弧焊工艺参数

    Table  1   8 mm stainless steel PAW technology experiment parameters

    试样编号焊枪高度h/mm离子气体流量Q/(L·min−1)焊接电流I / A焊接速度v /(mm·s−1)保护气体流量q/(L·min−1)
    14.52.52003.33312
    24.53.52003.33312
    34.51.52203.33312
    44.52.52203.33312
    54.53.52203.33312
    64.51.52403.33312
    74.52.52403.33312
    84.53.52403.33312
    下载: 导出CSV

    表  2   不同离子气体流量下正面电弧形态统计处理结果

    Table  2   Statistic processing results of frontal arc shape under different plasma gas flow rate

    焊枪高度
    h/mm
    离子气流量
    Q/(L·min−1)
    焊接电流
    I/A
    电弧面积
    S/mm2
    面积标准差
    σ
    4.51.522045.921.38
    4.52.522055.952.03
    4.53.522049.530.97
    下载: 导出CSV
  • [1]

    Sahoo A, Tripathy S. Development in plasma arc welding process: a review[J]. Materials Today:Proceedings, 2021, 41(1): 363 − 368.

    [2]

    Ahiale G K, Oh Y J, Choi W D, et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes[J]. Metals and Materials International, 2013, 19(5): 933 − 939. doi: 10.1007/s12540-013-5005-3

    [3]

    Mendez P F, Eagar T W. Welding processes for aeronautics[J]. Advanced Materials and Processes, 2001, 159(5): 39 − 43.

    [4]

    Wu C S, Jia C B, Chen M A. A control system for keyhole plasma arc welding of stainless steel plates with medium thickness[J]. Weld Journal, 2010, 89(11): 225 − 231.

    [5]

    Das B, Yadaiah N, Ozah R, et al. A perspective review on estimation of keyhole profile during plasma arc welding process[J]. Materials Today: Proceedings, 2018, 5(2): 6345 − 6350. doi: 10.1016/j.matpr.2017.12.244

    [6]

    Matsunawa A, Seto N, Kim J D, et al. Dynamics of keyhole and molten pool in high-power CO2 laser welding[J]. High-Power Lasers in Manufacturing. International Society for Optics and Photonics, 2000, 3888: 34 − 45. doi: 10.1117/12.377006

    [7] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属熔化焊接头缺欠分类及说明 中国: GB/T 6417.1—2005 [S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, The State Administration of the People's Republic of China for Standardization. Classification and explanation of imperfections in fusion welded joints China: GB/T 6417.1—2005[S]. Beijing: China Standard Press, 2006.

    [8] 胡庆贤, 徐斌, 王晓丽, 等. 穿孔型等离子弧焊接热-力耦合模型优化[J]. 焊接学报, 2017, 38(1): 13 − 16.

    Hu Qingxian, Xu Bin, Wang Xiaoli, et al. Optimization of thermal mechanical coupled model of KPAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 13 − 16.

    [9]

    Wu D, Tashiro S, Hua X, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model[J]. International Journal of Heat and Mass Transfer, 2019, 141(10): 604 − 614.

    [10]

    Wu C S, Wang L, Ren W J, et al. Plasma arc welding: Process, sensing, control and modeling[J]. Journal of Manufacturing Processes, 2014, 16(1): 74 − 85. doi: 10.1016/j.jmapro.2013.06.004

    [11] 嵇绍奇. 15-5PH不锈钢等离子弧焊接及焊后热处理[D]. 镇江: 江苏科技大学, 2015.

    Ji Shaoqi. Plasma arc welding and postweld heat treatment of15-5PH stainless steel[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.

    [12]

    Qing Li T, Yang X M, Chen L, et al. Arc behaviour and weld formation in gas focusing plasma arc welding[J]. Science and Technology of Welding and Joining, 2020, 25(4): 329 − 335. doi: 10.1080/13621718.2019.1702284

    [13]

    Xu J, Rong Y, Huang Y, et al. Keyhole-induced porosity formation during laser welding[J]. Journal of Materials Processing Technology, 2018, 252: 720 − 727. doi: 10.1016/j.jmatprotec.2017.10.038

    [14]

    Tokar A, Ponomarov V. Influence of pulsed tig welding parameters on the formation of subsurface channels in metal bodies[J]. Известия Тульского государственного университета. Технические науки, 2015, 6(2):84−93.

    [15] 李天庆, 陈璐, 张宇, 等. 气流再压缩等离子弧焊接电弧行为[J]. 焊接学报, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    Li Tianqing, Chen Lu, Zhang Yu, et al. Research on arc behavior in gas focusing plasma arc welding[J]. Transactions of the China Welding Institution, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    [16]

    Han Tao, Gu Shiwei, Xu Liang, et al. Study on stress and deformation of keyhole gas tungsten arc-welded joints[J]. China Welding, 2020, 29(1): 17 − 25.

图(10)  /  表(2)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  22
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回