高级检索

选区激光熔化成形12CrNi2合金钢的显微组织和力学性能

巴培培, 董志宏, 张炜, 彭晓

巴培培, 董志宏, 张炜, 彭晓. 选区激光熔化成形12CrNi2合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
引用本文: 巴培培, 董志宏, 张炜, 彭晓. 选区激光熔化成形12CrNi2合金钢的显微组织和力学性能[J]. 焊接学报, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003
Citation: BA Peipei, DONG Zhihong, ZHANG Wei, PENG Xiao. Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 8-17. DOI: 10.12073/j.hjxb.20210323003

选区激光熔化成形12CrNi2合金钢的显微组织和力学性能

基金项目: 国家重点研发计划(2016YFB1100203)
详细信息
    作者简介:

    巴培培,硕士; 主要研究激光增材制造合金钢;Email:2765615966@qq.com

    通讯作者:

    董志宏,副研究员;Email:zhdong@imr.ac.cn.

  • 中图分类号: TG 456.7; TG 146.2+3

Microstructure and mechanical properties of 12CrNi2 alloy steel manufactured by selective laser melting

More Information
  • 摘要: 利用选区激光熔化(SLM)技术制备了12CrNi2合金钢. 借助金相显微镜、扫描电子显微镜、透射电子显微镜、显微硬度仪、室温拉伸试验等方法研究了激光能量密度对合金钢显微组织和力学性能的影响. 结果表明,成形合金钢的宏观组织可分为熔池区与热影响区两部分,微观组织为回火马氏体和少量残余奥氏体. 随激光能量密度(EV)增加,成形合金钢的孔洞缺陷逐渐减少,致密度逐渐增加,最高可达到99.87%;同时,熔池体积增大,寿命增加,冷却速度降低,导致回火马氏体板条宽化,热影响区变宽,合金钢的显微硬度和强度降低,塑性增加. 在EV为81.34 J/mm3条件下,SLM成形12CrNi2合金钢具有最优强塑性,抗拉强度和屈服强度分别为1098和882 MPa,断后伸长率为20.07%. 采用SLM技术成形12CrNi2合金钢可获得比激光熔化沉积(LMD)和铸造成形更佳的综合力学性能.
    Abstract: 12CrNi2 alloy steel was additively manufactured using selective laser melting (SLM) technology. The influence of laser energy density on the microstructure and mechanical properties of the SLM-formed alloy steel has been studied using methods such as metallographic microscope, scanning electron microscope, transmission electron microscope, microhardness tester, and room temperature tensile test. The results demonstrate that the macrostructure of the SLM-formed alloy steel can be divided into two parts: molten pool zone and heat affected zone. The microstructure consists of tempered martensite and a small amount of retained austenite. With the increase of laser energy density (EV), the pore defects in the SLM-formed alloy steel are gradually reduced, and the density is gradually increased, which can reach 99.87%. In the meanwhile, the molten pool volume and lifetime increase and the cooling rate decreases, resulting in the widening of the tempered martensite lath and the heat-affected zone; further, the microhardness and strength of the alloy steel are decreased, and the plasticity is increased. When EV is 81.34 J/mm3, the SLM-formed 12CrNi2 alloy steel exhibits optimal tensile properties, its tensile strength and yield strength are 1098 MPa and 882 MPa, respectively, and its elongation is 20.07%. The comprehensive mechanical properties of 12CrNi2 alloy steel formed by SLM technology are better than those formed by laser melting deposition (LMD) and casting technology.
  • 激光增材制造(laser additive manufacturing, LAM),又称激光3D打印,作为一种新型材料成形方法,近年来受到越来越多的关注. LAM基于“离散—堆积”原理,利用计算机辅助设计三维模型,以激光作为能量源,通过熔化金属粉末(或丝材),“自下而上”逐层叠加直接成形零件[1-2]. 因制造原理与传统制造技术不同,LAM在成形复杂结构零件方面有巨大的原料成本和时间成本优势,同时,通过成形工艺控制可获得组织明显细化、力学性能优异的零件[3-4]. 目前应用最多的LAM方法有两种,分别是以材料同步送进为主要特征的激光熔化沉积(laser melting deposition, LMD)技术和以粉末床为主要特征的选区激光熔化(selective laser melting, SLM)技术. 两种技术均可成形性能良好的零件,其中,前者采用较大尺寸激光束,熔化厚度可达毫米级,一般获得尺寸和形状非常接近于最终零件的“近形”制件,经过后续小余量加工以及必要热处理获得最终零件;后者采用小尺寸激光束,熔化厚度一般为几十微米,熔池寿命短,因此,其成形零件不但尺寸精度高,而且显微组织细小,力学性能优异[5-6]. 目前,已有钛合金及高温合金的LAM零件在航空航天、生物医疗等领域获得应用[7-10].

    高性能合金钢是国民经济中常用的重要金属材料,针对某些形状复杂、传统制造成本较高的关键合金钢零件开展LAM成形已突显出其实际应用价值. 与其它材料不同,合金钢成分多样,相变复杂,在激光成形过程中会形成马氏体、贝氏体、铁素体、碳化物等多种组织,产生较大组织应力,加之成形时的热应力,使得LAM成形合金钢零件的组织均匀性调控以及性能稳定性控制难度增大. 合金钢件的LAM成形研究起步较晚,近些年才有较多相关报道,涉及如300M[11],H13[12],12CrNi2[13],24CrNiMo[14-17]等合金钢.

    12CrNi2是一种低碳低合金结构钢,具有优良的强韧性能,可用于制造核电应急柴油机凸轮轴等关键零部件[18],是LAM成形研究较多的高性能合金钢之一. 目前,12CrNi2合金钢件多采用LMD技术成形. 由于LMD连续成形的特点,致使多层叠加后的热积累效应明显,当成形尺寸较大时,单层的冷却速度较慢,因此成形钢件中较难形成马氏体或回火马氏体组织,而多以铁素体为主,这限制了成形12CrNi2合金钢件综合力学性能的提高. 如前期的研究工作中[19-21],优化工艺下LMD成形12CrNi2合金钢的显微组织主要为铁素体和少量奥氏体,虽然延展性较好(22% ~ 33%),但其抗拉强度仅为650 ~ 690 MPa,硬度为250 HV0.1 ~ 320 HV0.1. 东北大学陈岁元教授的团队对LMD成形12CrNi2合金钢也进行了大量研究[22-23],因激光参数的差异,成形合金钢件的显微组织主要为贝氏体和铁素体,抗拉强度和硬度分别可达901 MPa和342 HV0.2,断后伸长率为7.1% ~ 15.2%. 沈阳工业大学的张松教授的团队[24]利用LMD成形的12CrNi2合金钢同样为贝氏体和铁素体组织,在优化工艺参数下获得的抗拉强度和硬度分别达到1000 MPa和348 HV0.2,断后伸长率约为10%. 通常,为了进一步提高LMD成形12CrNi2合金钢的综合力学性能,需对其进行适当热处理[21, 25-26]. 如果能以成形态就达到较佳的性能,则可降低制造成本. 为此,文中拟通过SLM技术成形12CrNi2合金钢,利用该技术熔池体积小、冷却速度快的成形特点,获得强度更高且细化的显微组织,以期进一步改善合金钢件的综合力学性能. 由于SLM工艺参数对成形件的孔隙率、缺陷尺寸和分布以及相组成有明显影响,为实现性能改善,须先优化激光工艺参数,获得高致密度成形件,再通过适当参数调控获得所需性能. 因此,文中着重研究不同激光能量密度条件下SLM成形12CrNi2合金钢的显微组织演化及其对力学性能的影响,并在此基础上获得性能优化的SLM工艺参数.

    SLM用12CrNi2合金钢粉末通过气雾化法制备,其化学成分见表1. 合金钢粉末颗粒多呈球形,表面较光滑,平均粒径为27.1 μm,如图1所示. 另外,制备了12CrNi2合金钢铸件(成分见表1)用于对比试验.

    表  1  12CrNi2合金钢粉末和SLM成形件化学成分(质量分数,%)
    Table  1.  Chemical composition of 12CrNi2 alloy steel powder and SLM-formed steel
    状态CCrNiMnSiOPSFe
    粉末0.130.801.720.500.180.0830.0080.003余量
    SLM0.110.801.710.450.190.0290.0110.005余量
    铸态0.100.901.880.480.29̶0.0050.007余量
    下载: 导出CSV 
    | 显示表格
    图  1  12CrNi2合金钢粉末的形貌和粒径分布
    Figure  1.  Morphology and particle size distribution of 12CrNi2 alloy steel powder. (a) morphology; (b) particle size distribution

    SLM成形在德国EOS M290型金属成形系统上进行. 基板采用304不锈钢,成形过程中预热至80 ℃. SLM工艺参数为:光斑直径75 μm,铺粉厚度40 μm,激光功率300 ~ 360 W,扫描速度750 ~ 1150 mm/s. 成形过程在氩气气氛中进行,成形室内氧的体积分数为0.05%. 图2为激光扫描策略示意图. 将每一层分为宽10 mm的条形区域,激光束以110 μm的扫描间距在该区域内按图中箭头所示往复扫描. 第n层结束后扫描路径旋转67°成形第n + 1层,如此重复. 分别成形拉伸试样(图3)与30 mm × 30 mm × 10 mm块状试样,其中,块状试样用于组织、硬度、致密度的分析.

    图  2  SLM工艺扫描策略示意图
    Figure  2.  Schematic of scanning strategy of SLM forming
    图  3  拉伸试样尺寸(mm)
    Figure  3.  Dimensions of tensile specimen

    选取成形合金钢件的yOz面进行打磨、抛光、刻蚀,然后用光学显微镜(OM)和扫描电子显微镜(SEM)观察其显微组织. 刻蚀溶液有两种,分别为4%硝酸酒精溶液和Lepera溶液. 因SLM成形合金钢的显微组织一般包含多种组织,如贝氏体、马氏体和残余奥氏体等,这些组织用硝酸酒精溶液刻蚀后较难在OM中区分[27],而通过Lepera溶液刻蚀可在不同显微组织上形成非等厚的干涉膜,在光学显微镜下呈现不同颜色,如马氏体与奥氏体呈白色,而马氏体回火后颜色变深,可与奥氏体区分[28].

    利用X射线衍射(XRD)仪对合金钢进行物相分析. 利用透射电子显微镜(TEM)分析SLM成形合金钢的显微结构. TEM试样采用聚焦离子束(FIB)在4%硝酸酒精刻蚀后的YOZ面指定区域获取.

    用阿基米德定律法测量成形件密度,并与铸件对比得出致密度,测试样品尺寸为10 mm × 10 mm × 10 mm,6个面均抛光至镜面效果.

    在成形合金钢的xOy面上切取拉伸试样,厚度为Oz方向,尺寸如图3所示. 在INSTRON 5982电子万能试验机上测试合金钢的室温拉伸性能,应变率为1 × 10−3 s−1. 利用显微硬度仪进行硬度测量,载荷为0.1 kg,加载时间为10 s,每个试样测量5个点取平均值.

    图4给出了铸态和SLM成形态(P = 340 W,v = 950 mm/s)12CrNi2合金钢的XRD图谱. 两种方法制备的合金钢中均只检测到体心立方(BCC)结构铁(α-Fe). 其中,SLM成形合金钢的衍射峰较标准α-Fe(PDF#99-0064)略微向低角偏移,说明其晶格间距增大,这主要与SLM成形过程中熔池极快的冷却速度而引起的C在α-Fe中的过饱和固溶有关,即形成马氏体. 由于后续熔覆层的再加热作用会使该马氏体组织发生一定程度回火,因此,BCC结构铁应为回火马氏体.

    图  4  铸态和SLM成形合态12CrNi2合金钢的XRD图
    Figure  4.  XRD patterns of as-cast and SLM-formed alloy steel

    图5给出了铸态及SLM成形态12CrNi2合金钢的典型显微组织OM像. 铸态合金钢主要由铁素体与珠光体组成(4%硝酸酒精溶液刻蚀)(图5a),由其中插图给出的高倍SEM像可知,虽然OM像中有大量灰黑色的组织,但其中包含的珠光体量较少,因此XRD未检测到明显的碳化物衍射峰. 相比之下,SLM成形合金钢的显微组织则非常细小(Lepera溶液刻蚀),且为分层结构,如图5b图5c所示. SLM的成形过程决定了成形合金钢由数个熔覆层组成,每个熔覆层包含数个熔道. 熔道内部颜色较浅,为熔化金属凝固后形成的熔池区(molten pool zone,MZ). 熔道边缘颜色较深,为新熔覆层对已凝固部分造成的热影响区(heat affected zone, HAZ). 图5b中,熔池区主要呈现褐色,结合XRD结果可知,该区域为回火马氏体组织,其形成主要是因新熔覆层的热量造成该区域内马氏体发生一定程度的回火所致. 回火程度随远离新熔覆层而逐渐减弱[17],因此熔池区的颜色至上而下由深褐色逐渐转变为浅褐色. 由图5c的高倍像,熔池区内还存在少量白亮色区域,应为残余奥氏体. 热影响区内,显微组织明显粗化,并出现白亮色的岛状奥氏体组织(其成因将在后面详细阐述).

    图  5  12CrNi2合金钢的显微组织OM像(Lepera溶液刻蚀,P = 340 W,v = 950 mm/s)
    Figure  5.  OM morphology of 12CrNi2 alloy steel formed by different processes. (a) as-cast; (b) cross-sections of SLM-formed alloy steel; (c) partial enlargement of cross-sections of SLM-formed alloy steel

    由于SLM成形合金钢的显微组织非常细小,常规OM很难分辨其精细结构,为此进一步对熔池区和热影响区进行了TEM分析,结果如图6所示. 其中,图6a为熔池区明场像,插图为熔池区选区电子衍射(SAED)结果,图6b为热影响区明场像,插图为热影响区SAED结果,图6c图6b对应暗场像. 熔池区内可以观察到明显的马氏体的板条状结构,且板条宽度约为115 nm. 根据SAED结果,熔池区存在奥氏体,与马氏体之间为K-S关系([$ \overline {1}11 $]α//[011]γ及(110)α//($ \overline {1}1\overline {1} $)γ). 热影响区同样可观察到马氏体的板条状结构(图6b),其宽度约为200 nm. 暗场像中,板条之间存在其他相(图6c),结合SAED 结果可知,此相为残余奥氏体,其与基体(α-Fe)之间符合[001]α//[011]γ及($ \overline {1}\overline {1}0 $)α // ($ \overline {1} 1$$ \overline {1} $)γ取向关系,即K-S关系. 另外,熔池区和热影响区内基本没有发现碳化物.

    图  6  SLM成形合金钢不同区域TEM像
    Figure  6.  TEM images of different areas of SLM-formed alloy steel. (a) molten pool zone; (b) heat affected zone 1; (c) heat affected zone 2

    熔覆层内显微组织的变化与熔覆层成形时的热效应密切相关. 新熔覆层成形时其熔池的热量会重新加热已成形部分. 紧邻新熔覆层的区域所受影响最大,其温度会超过合金钢的奥氏体化温度而发生固态相变,形成热影响区. 在升温奥氏体化过程中,奥氏体优先在晶界和马氏体板条边界等区域的富碳位置形核和生长,同时周围马氏体中的碳元素向奥氏体内扩散,使奥氏体的稳定性提高,致其可保留至室温[29]. 但由于高能激光束的快速移动,熔池存在时间极短,这导致热影响区的奥氏体化时间也极短,奥氏体化并不完全. 热影响区内马氏体板条多数发生回复后变宽,且碳元素扩散进入奥氏体,致使马氏体的含碳量降低,因此该区域内基本无碳化物析出. 随着距离增加(远离热影响区),温度逐渐降低,当低于奥氏体化温度时,不能发生上述转变. 但升温仍可造成已成形熔池区的马氏体发生一定程度回火,且因马氏体板条受热程度小,板条宽化不明显.

    SLM成形合金钢的显微组织和力学性能与激光成形参数密切相关[30- 31]. 文中主要探究激光功率和扫描速度的影响. 激光功率决定了粉末吸收激光能量的多少,扫描速度决定了激光束与粉末的作用时间[32]. 总体上都代表激光能量与粉末的相互作用程度. 为了综合考虑这两个因素的作用,定义了激光体能量密度EV = $\dfrac{P}{{vsl}}$,(其中P为激光功率,v为扫描速度,s为扫描间距,l为铺粉厚度)[33].

    图7图8给出了不同EV条件下SLM成形12CrNi2合金钢的截面显微组织OM像. 当EV较小时,熔覆层起伏明显,粉末熔化不充分,成形合金钢中形成较多孔洞,且这些孔洞主要出现在熔道间搭接区,部分孔洞中存在球形颗粒,如图8中SEM插图所示(EV = 71.77 J/mm3). 相反,当EV较大时,熔池温度升高,金属粉末熔化充分且液相粘度降低、流动性好,最终形成平坦、致密的熔覆层,且熔覆层厚度明显增大.

    图  7  不同工艺参数下SLM成形12CrNi2合金钢截面OM像(P=320 W)
    Figure  7.  OM images of cross-section of SLM-formed 12CrNi2 alloy steel with different laser parameters. (a) v = 750 mm/s, Ev = 96.67 J/mm3; (b) v = 850 mm/s, Ev = 85.56 J/mm3; (c) v = 950 mm/s, Ev = 75.56 J/mm3; (d) v = 1 150 mm/s, Ev = 63.24 J/mm3

    孔洞的形成会影响成形合金钢的致密度,进而影响性能. 为了确定激光工艺参数对成形合金钢致密度的影响,以铸态合金钢为参照,对不同EV条件下成形合金钢的致密度进行了测量,结果如图9所示. 当EV为63.24 J/mm3时,合金钢的致密度最低,为99.23%. 随着EV增加,合金钢的致密度逐渐增加,当EV增加到85.56 J/mm3时,致密度达到最大,为99.82%. 致密度随EV的变化规律与图7图8所示的显微组织演化规律相符.

    图  8  不同激光功率下SLM成形12CrNi2合金钢截面OM像(v=950 mm/s)
    Figure  8.  OM images of cross-section of SLM-formed 12CrNi2 alloy steel with different laser power. (a) p = 360 W Ev = 86.12 J/mm3;(b) p = 340 W Ev = 81.34 J/mm3;(c) p = 300 W Ev = 71.77 J/mm3
    图  9  不同EV下SLM成形12CrNi2合金钢致密度
    Figure  9.  Relative density of SLM-formed 12CrNi2 alloy steel with different EV

    不同EV条件下热影响区形貌也发生明显变化,如图10所示. 随着EV增加,激光对粉末的能量输入增加,熔池温度升高,这增加了对已成形部分的热影响范围,因此热影响区变厚. 同时,热影响区完全奥氏体化后冷却速度降低,形成的板条宽度增加.

    图  10  不同EV条件下SLM成形12CrNi2合金钢的热影响区SEM像
    Figure  10.  SEM images of SLM-formed 12CrNi2 alloy steel with different EV. (a) EV = 63.24 J/mm3; (b) EV = 81.34 J/mm3; (c) EV = 96.97 J/mm3

    如前所述,SLM成形12CrNi2合金钢中形成了熔池区和热影响区两种典型区域,且两区域的显微组织随激光工艺参数发生改变,这将导致成形合金钢力学性能的差异. 因此,首先分别对这两个区域进行显微硬度分析,结果如图11所示. 熔池区与热影响区的硬度均随EV增加而降低,这是因为随EV增加,熔池温度升高,其对已成形部分的热效应增强,使得两个区域组织逐渐粗化所致. 另外,相同能量密度条件下,热影响区的硬度低于熔池区,这主要是热影响区发生固态相变,元素重新分配,且组织粗化所致. 总体来看,SLM成形12CrNi2合金钢的硬度明显高于铸态合金钢(215.2 HV0.1),同时也高于绝大多数LMD成形12CrNi2合金钢的硬度(250 ~ 330 HV0.1[20-21, 34]).

    图  11  不同EV条件下SLM成形12CrNi2合金钢的显微硬度
    Figure  11.  Microhardness of SLM-formed 12CrNi2 alloy steel with different EV

    为探究激光参数对拉伸性能的影响,对不同能量密度条件下SLM成形12CrNi2合金钢进行拉伸测试,结果如图12表2所示. 其中,铸态12CrNi2合金钢进行了相同测试以作对比. 随着EV增加,合金钢的抗拉强度与屈服强度逐渐降低,但均远高于铸态合金钢. 当EV为63.24 J/mm3(P = 320 W,v = 1150 mm/s)时,合金钢的抗拉强度和屈服强度最高,分别为1120和972 MPa. 此条件下,激光的扫描速度很快,熔池体积小、存在时间短,马氏体因回火程度小保持了较高的强度. 但合金钢中还存在少量孔洞(图7),致密度为99.23% (图8),致使拉伸时孔洞处应力集中而过早形成裂纹,降低了延展性(15.07%). 当EV高于81.34 J/mm3时,合金钢的致密度明显改善(> 99.5%),延展性已与铸态合金钢相当. 可见,在合适的激光工艺条件下,SLM成形12CrNi2合金钢的综合力学性能明显优于铸态合金钢. 另外,表2中还列举了一些LMD成形12CrNi2合金钢的力学性能结果. 相比之下,SLM工艺制备的12CrNi2合金钢同样具有更高的强度,且延展性能降低不多,综合力学性能更好.

    表  2  不同方法制备的12CrNi2合金钢的力学性能
    Table  2.  Mechanical properties of the 12CrNi2 alloy steel manufactured by different methods
    不同工艺能量密度EV/(J·mm−3)屈服强度 ReL/MPa抗拉强度 Rm/MPa断后伸长率 A(%)参考文献
    SLM63.24972112015.07
    81.34882109820.07
    86.12877103120.57
    铸态96.9784199820.64
    35155019.28
    LMD580.6652.932.4[20]
    631.4683.622.7[21]
    692100719.3[34]
    下载: 导出CSV 
    | 显示表格
    图  12  SLM成形12CrNi2合金钢的拉伸结果
    Figure  12.  Tensile results of SLM-formed 12CrNi2 alloy steel. (a) tensile curves; (b) mechanical properties

    SLM成形12CrNi2合金钢的显微组织主要为细小的回火马氏体,拉伸过程中,细小回火马氏体中的大量界面将强烈阻碍位错的滑移,因此,合金钢的强度比铸态合金钢和LMD成形合金钢更高. 随着激光能量密度增加,熔池的冷却速度减慢,形成的马氏体组织变粗,同时受后续熔覆层的热影响增强,回火程度增加,致使熔池区和热影响区的组织均发生粗化(图10),对位错滑移的阻碍作用减弱,因此强度降低,延展性增加.

    通过观察拉伸断口形貌可以进一步验证以上结果,如图13所示. 当EV为63.24 J/mm3时(图13a),试样的颈缩现象不明显,断口上除了有孔洞外,还出现了准解理面断裂特征,同时韧窝少且浅,断口表现为准解理断裂和韧性断裂的混合断裂模式,因此试样的延展性较差. 当EV增加到96.97 J/mm3(图13b),试样发生明显的颈缩现象,大量的等轴韧窝表明该样品的拉伸断口为典型的韧性断裂,因此其断后伸长率提高到20.64%. 图13c中,铸态合金钢的断口颈缩现象较不明显,虽然形成大量韧窝,但由于显微组织主要为较粗大的铁素体,因此,韧窝的尺寸明显比SLM成形合金钢更大,合金钢的强度也更低.

    图  13  SLM成形合金钢与铸态合金钢断口形貌
    Figure  13.  Tensile fractures of SLM-formed alloy steel and as-casted alloy steel. (a) EV = 63.24 J/mm3; (b) EV = 96.97 J/mm3; (c) as-cast alloy steel

    (1) SLM成形12CrNi2合金钢熔覆层分为熔池区与热影响区两部分,微观组织为回火马氏体和少量残余奥氏体.

    (2)随激光能量密度(EV)增加,成形合金钢的孔洞缺陷减少,致密度增加,最高可达99.87%;同时,马氏体板条宽化,合金钢的显微硬度和强度均降低.

    (3)采用SLM技术成形12CrNi2合金钢可获得比LMD和铸造技术成形更好的综合力学性能. 在EV为81.34 J/mm3条件下,SLM成形12CrNi2合金钢具有最优的强塑性,抗拉强度和屈服强度分别为1098和882 MPa,断后伸长率为20.07%.

  • 图  1   12CrNi2合金钢粉末的形貌和粒径分布

    Figure  1.   Morphology and particle size distribution of 12CrNi2 alloy steel powder. (a) morphology; (b) particle size distribution

    图  2   SLM工艺扫描策略示意图

    Figure  2.   Schematic of scanning strategy of SLM forming

    图  3   拉伸试样尺寸(mm)

    Figure  3.   Dimensions of tensile specimen

    图  4   铸态和SLM成形合态12CrNi2合金钢的XRD图

    Figure  4.   XRD patterns of as-cast and SLM-formed alloy steel

    图  5   12CrNi2合金钢的显微组织OM像(Lepera溶液刻蚀,P = 340 W,v = 950 mm/s)

    Figure  5.   OM morphology of 12CrNi2 alloy steel formed by different processes. (a) as-cast; (b) cross-sections of SLM-formed alloy steel; (c) partial enlargement of cross-sections of SLM-formed alloy steel

    图  6   SLM成形合金钢不同区域TEM像

    Figure  6.   TEM images of different areas of SLM-formed alloy steel. (a) molten pool zone; (b) heat affected zone 1; (c) heat affected zone 2

    图  7   不同工艺参数下SLM成形12CrNi2合金钢截面OM像(P=320 W)

    Figure  7.   OM images of cross-section of SLM-formed 12CrNi2 alloy steel with different laser parameters. (a) v = 750 mm/s, Ev = 96.67 J/mm3; (b) v = 850 mm/s, Ev = 85.56 J/mm3; (c) v = 950 mm/s, Ev = 75.56 J/mm3; (d) v = 1 150 mm/s, Ev = 63.24 J/mm3

    图  8   不同激光功率下SLM成形12CrNi2合金钢截面OM像(v=950 mm/s)

    Figure  8.   OM images of cross-section of SLM-formed 12CrNi2 alloy steel with different laser power. (a) p = 360 W Ev = 86.12 J/mm3;(b) p = 340 W Ev = 81.34 J/mm3;(c) p = 300 W Ev = 71.77 J/mm3

    图  9   不同EV下SLM成形12CrNi2合金钢致密度

    Figure  9.   Relative density of SLM-formed 12CrNi2 alloy steel with different EV

    图  10   不同EV条件下SLM成形12CrNi2合金钢的热影响区SEM像

    Figure  10.   SEM images of SLM-formed 12CrNi2 alloy steel with different EV. (a) EV = 63.24 J/mm3; (b) EV = 81.34 J/mm3; (c) EV = 96.97 J/mm3

    图  11   不同EV条件下SLM成形12CrNi2合金钢的显微硬度

    Figure  11.   Microhardness of SLM-formed 12CrNi2 alloy steel with different EV

    图  12   SLM成形12CrNi2合金钢的拉伸结果

    Figure  12.   Tensile results of SLM-formed 12CrNi2 alloy steel. (a) tensile curves; (b) mechanical properties

    图  13   SLM成形合金钢与铸态合金钢断口形貌

    Figure  13.   Tensile fractures of SLM-formed alloy steel and as-casted alloy steel. (a) EV = 63.24 J/mm3; (b) EV = 96.97 J/mm3; (c) as-cast alloy steel

    表  1   12CrNi2合金钢粉末和SLM成形件化学成分(质量分数,%)

    Table  1   Chemical composition of 12CrNi2 alloy steel powder and SLM-formed steel

    状态CCrNiMnSiOPSFe
    粉末0.130.801.720.500.180.0830.0080.003余量
    SLM0.110.801.710.450.190.0290.0110.005余量
    铸态0.100.901.880.480.29̶0.0050.007余量
    下载: 导出CSV

    表  2   不同方法制备的12CrNi2合金钢的力学性能

    Table  2   Mechanical properties of the 12CrNi2 alloy steel manufactured by different methods

    不同工艺能量密度EV/(J·mm−3)屈服强度 ReL/MPa抗拉强度 Rm/MPa断后伸长率 A(%)参考文献
    SLM63.24972112015.07
    81.34882109820.07
    86.12877103120.57
    铸态96.9784199820.64
    35155019.28
    LMD580.6652.932.4[20]
    631.4683.622.7[21]
    692100719.3[34]
    下载: 导出CSV
  • [1] 袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10): 40 − 48.

    Yuan Ding, Gao Huabing, Sun Xiaojing, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 40 − 48.

    [2] 李宏棋. 激光增材制造技术及其应用[J]. 科教导刊(中旬刊), 2019(12): 47 − 48.

    Li Hongqi. Manufacturing technology of laser adding materials and its application[J]. The Guide of Science & Education, 2019(12): 47 − 48.

    [3]

    Yu Qun, Wang Cunshan, Wang Di, et al. Microstructure and properties of Ti-Zr congruent alloy fabricated by laser additive manufacturing[J]. Journal of Alloys and Compounds, 2020(834): 1 − 10.

    [4]

    Song Bo, Dong Shujuan, Deng Sihao, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56: 451 − 460.

    [5]

    Zhang Yimin, Huang Weibo. Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting[J]. Journal of Manufacturing Processes, 2020, 57: 324 − 333. doi: 10.1016/j.jmapro.2020.06.042

    [6]

    Ma Mingming, Wang Zemin, Zeng Xiaoyan. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering: A, 2017, 685: 265 − 273. doi: 10.1016/j.msea.2016.12.112

    [7]

    Guo Wei, Wang Hao, Peng Peng, et al. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy[J]. Corrosion Science, 2020, 170: 1 − 10. doi: 10.1016/j.corsci.2020.108655

    [8]

    Wang Xiang, Zhang Linjie, Ning Jie, et al. Effect of addition of micron-sized lanthanum oxide particles on morphologies, microstructures and properties of the wire laser additively manufactured Ti–6Al–4V alloy[J]. Materials Science and Engineering: A, 2021, 803: 1 − 6. doi: 10.1016/j.msea.2020.140475

    [9]

    Han Liying, Wang Cunshan. Microstructure and properties of Ti64.51Fe26.40Zr5.86Sn2.93Y0.30 biomedical alloy fabricated by laser additive manufacturing[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3274 − 3286. doi: 10.1016/S1003-6326(20)65460-7

    [10]

    Klas Solberg, Filippo Berto. The effect of defects and notches in quasi-static and fatigue loading of Inconel 718 specimens produced by selective laser melting[J]. International Journal of Fatigue, 2020, 137: 1 − 10. doi: 10.1016/j.ijfatigue.2020.105637

    [11]

    Liu Fengguang, Lin Xin, Song Menghua, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015, 621: 35 − 41. doi: 10.1016/j.jallcom.2014.09.111

    [12]

    Mertens R, Vrancken B, Holmstock N, et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 2016, 83: 882 − 890. doi: 10.1016/j.phpro.2016.08.092

    [13]

    Ebrahimnia Mohamad, Xie Yujiang, Chi Changtai. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel[J]. Acta Metallurgica Sinica(English Letters), 2020, 3(4): 60 − 70.

    [14]

    Cao Lin, Chen Suiyuan, Wei Mingwei, et al. Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel[J]. Optics & Laser Technology, 2019, 111: 541 − 553.

    [15]

    Wang Qing, Zhang Zhihui, Tong Xin, et al. Effects of process parameters on the microstructure and mechanical properties of 24CrNiMo steel fabricated by selective laser melting[J]. Optics & Laser Technology, 2020, 128: 1 − 10.

    [16] 杨晨, 董志宏, 迟长泰, 等. 选区激光熔化成形24CrNiMo合金钢的组织结构与力学性能[J]. 中国激光, 2020, 47(5): 389 − 399.

    Yang Chen, Dong Zhihong, Chi Changtai, et al. Microstructure and Mechanical Properties of 24CrNiMo Alloy Steel Formed by Selective Laser Melting[J]. Chinese Journal of Lasers, 2020, 47(5): 389 − 399.

    [17]

    Tang Xu, Zhang Song, Zhang Chunhua, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Materials Characterization, 2020, 170: 1 − 10. doi: 10.1016/j.matchar.2020.110718

    [18]

    Dong Zhihong, Zhang Wei, Kang Hongwei, et al. Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge[J]. Surface & Coatings Technology, 2020, 397: 1 − 10.

    [19] 张炜, 董志宏, 亢红伟, 等. 回火对激光增材制造12CrNi2合金钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(2): 59 − 66.

    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.

    [20]

    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Effect of tempering on microstructure and mechanical properties of the 12CrNi2 alloy steel prepared by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2020, 41(2): 59 − 66.

    [21]

    Zhang Wei, Dong Zhihong, Kang Hongwei, et al. Enhancement of strength–ductility balance of the laser melting deposited 12CrNi2 alloy steel via multi-step quenching treatment[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234 − 1244.

    [22]

    Zhou Yue, Chen Suiyuan, Chen Xueting, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power[J]. Materials Science and Engineering, 2019, 742(10): 150 − 161.

    [23]

    Guan Tingting, Chen Suiyuan, Chen Xueting, et al. Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition[J]. Journal of Materials Science & Technology, 2019, 35(2): 395 − 402.

    [24]

    Xu Y H, Zhang C H, Zhang S, et al. Scanning velocity influence on microstructure evolution and mechanical properties of laser melting deposited 12CrNi2 low alloy steel[J]. Vacuum, 2020, 177: 1 − 10. doi: 10.1016/j.vacuum.2020.109387

    [25]

    Cui X, Zhang S, Wang C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel[J]. Materials Science and Engineering A, 2020, 791: 1 − 10. doi: 10.1016/j.msea.2020.139738

    [26]

    Zhang W, Dong Z, Kang H, et al. Effect of various quenching treatments on microstructure and mechanical behavior of a laser additively manufactured 12CrNi2 alloy steel[J]. Journal of Materials Processing Technology, 2021, 288: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116907

    [27] 谷秀锐, 赵英利, 白丽娟, 等. 彩色金相在显微组织分析中的应用[J]. 理化检验(物理分册), 2018, 54(5): 322 − 325,328.

    Gu Xiurui, Zhao Yingli, Bai Lijuan, et al. Application of color m etallography in microstructure analysis[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2018, 54(5): 322 − 325,328.

    [28]

    Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40(2): 111 − 118. doi: 10.1016/S1044-5803(97)00154-X

    [29]

    Luo Xiang, Chen Xiaohua, Wang Tao, et al. Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel[J]. Materials Science and Engineering, 2018, 710(5): 192 − 199.

    [30]

    Cherry J A, Mehmood H M, Lavery N P, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 869 − 879. doi: 10.1007/s00170-014-6297-2

    [31]

    Suman Das. Physical aspects of process control in selective laser sintering of metals[J]. Advanced Engineering Materials, 2003, 5(10): 701 − 711. doi: 10.1002/adem.200310099

    [32] 张丹, 王猛, 李闯闯. TA15钛合金选区激光熔化成形工艺研究[J]. 铸造技术, 2020, 41(5): 407 − 412.

    Zhang Dan, Wang Meng, Li Chuangchuang. Effect of processing parameters on selective laser melting of TA15 titanium alloy[J]. Foundry Technology, 2020, 41(5): 407 − 412.

    [33] 魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212

    Wei Kaiwen, Wang Zemin, Zeng Xiaoyan. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica, 2016, 52(2): 184 − 190. doi: 10.11900/0412.1961.2015.00212

    [34]

    Zhao Xuan, Lü Yaohui, Dong Shiyun, et al. The martensitic strengthening of 12CrNi2 low-alloy steel using a novel scanning strategy during direct laser deposition[J]. Optics & Laser Technology, 2020, 132: 1 − 10.

  • 期刊类型引用(6)

    1. 冯消冰,王建军,王永科,陈苏云,刘爱平. 面向大型结构件爬行机器人智能焊接技术. 清华大学学报(自然科学版). 2023(10): 1608-1625 . 百度学术
    2. 詹剑良,金浩哲. 六工位焊接电器盒系统设计. 机械制造文摘(焊接分册). 2022(02): 41-44 . 百度学术
    3. 李建宇,倪川皓,江亚平,贾小磊. 高强钢小角度坡口深熔焊工艺. 机械制造文摘(焊接分册). 2022(05): 26-30 . 百度学术
    4. 周利平,朵丛,韩永刚. 常见焊接接头的机器人焊接工艺设计. 科技视界. 2022(29): 101-103 . 百度学术
    5. 刘云鸾,敖三三,罗震,相茜. 焊接与智能制造(下)——第25届北京·埃森焊接与切割展览会焊接国际论坛综述. 焊接技术. 2021(08): 1-3 . 百度学术
    6. 洪妍,樊星. 北京·埃森焊接展之焊接智能化. 焊接技术. 2021(S1): 78-82 . 百度学术

    其他类型引用(3)

图(13)  /  表(2)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  27
  • PDF下载量:  39
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2021-10-24
  • 刊出日期:  2021-08-30

目录

/

返回文章
返回