高级检索

基于响应面法7A52高强铝合金FSW接头抗拉强度预测及优化

范文学, 陈芙蓉

范文学, 陈芙蓉. 基于响应面法7A52高强铝合金FSW接头抗拉强度预测及优化[J]. 焊接学报, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
引用本文: 范文学, 陈芙蓉. 基于响应面法7A52高强铝合金FSW接头抗拉强度预测及优化[J]. 焊接学报, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001
Citation: FAN Wenxue, CHEN Furong. Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 55-60. DOI: 10.12073/j.hjxb.20210322001

基于响应面法7A52高强铝合金FSW接头抗拉强度预测及优化

基金项目: 国家自然科学基金资助项目(51765053);内蒙古自治区高等学校科学研究项目(NJZZ21020);内蒙古工业大学校级项目(ZD201721)
详细信息
    作者简介:

    范文学,博士,高级试验师;主要从事焊接接头力学性能方面的研究;Email:fwx201878@imut.edu.cn

    通讯作者:

    陈芙蓉,教授;Email:cfr7075@vip.163.com.

  • 中图分类号: TG 456.7

Prediction and optimization of tensile strength of 7A52 aluminum alloy friction stir welding joints based on response surface methodology

  • 摘要: 为了研究7A52铝合金搅拌摩擦焊的焊接速度、搅拌头转速及轴肩压深对接头抗拉强度的影响,采用响应面法的中心复合试验设计法设计20组试验,并建立抗拉强度响应函数关系式. 为了验证响应函数关系式的精确性,通过方差分析和回归分析确定该回归模型为显性,相关性系数R2的偏差为3.17%. 通过单一焊接参数因素和双因素焊接参数对抗拉强度的影响分析,进一步验证了模型的准确性,最后通过拉伸试验验证. 结果表明,基于响应面法拟合的搅拌摩擦焊焊接速度、搅拌头转速及轴肩压深与接头抗拉强度响应函数关系式能精确的预算不同焊接参数组合所对应的接头抗拉强度,并获得接头最佳参数组合为焊接速度110 mm/min、搅拌头转速1 436 r/min和轴肩压深0.55 mm,得到最大预测抗拉强度为380 MPa.
    Abstract: In order to study the effects of welding speed, stirring head rotation speed and pressure deep of shaft shoulder on tensile strength of 7A52 aluminum alloy friction stir welding. 20 groups of tests were designed by response surface methodology based on central composite test design, and response function relationship were established. In order to verify the accuracy of the response function relationship, variance analysis and regression analysis were used to determine the dominance of the regression model, and the deviation of correlation coefficient R2 was only 3.17%. The accuracy of the model was verified by analyzing the influence of single welding parameter and double welding parameter on tensile strength. Finally, the model was verified by tensile test. The results show that the joint tensile strength can be predicated based on response function relationship of response surface methodology fitting, and the best combination of welding parameter (welding speed 110 mm/min, stirring head rotation speed 1 436 r/min, pressure deep of shaft shoulder 0.55 mm) was gained. The maximum predication tensile strength was 380 MPa.
  • 图  1   各因素对抗拉强度的直接影响

    Figure  1.   Direct effect of each factor on the tensile strength. (a) welding speed; (b) stirring head rotation speed; (c) pressure deep of shaft

    图  2   两因素交互对接头抗拉强度的响应面图

    Figure  2.   Response surface of the tensile strength. (a) weld speed and stirring head rotationg speed; (b) welding speed and pressure deep of shaft shoulder; (c) stirring head rotation speed and pressure deep of shaft shoulder

    表  1   7A52铝合金的化学成分(质量分数,%)

    Table  1   Chemical compositions of 7A52 aluminum alloy

    ZrZnMgFeMnSiCrCuAl
    0.124.22.30.330.310.240.230.13余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Welding parameter

    焊接速度
    v/(mm·min−1)
    转速
    n/(r·min−1)
    轴肩压深
    h/mm
    60 ~ 200600 ~ 2 5000.3 ~ 0.8
    下载: 导出CSV

    表  3   基于CCD试验设计的FSW接头抗拉强度

    Table  3   Results of tensile strength of FSW joints based on CCD

    因素实际焊接参数标准化焊接参数抗拉强度
    Rm/MPa
    焊接速度v/(mm·min−1)转速n/(r·min−1)轴肩压深h/mm焊接速度X1转速X2轴肩压深X3
    1 70 700 0.3 −1 −1 −1 275.10
    2 70 700 0.8 −1 −1 1 328.92
    3 70 1500 0.3 −1 1 −1 251.61
    4 70 1500 0.8 −1 1 1 305.43
    5 150 700 0.3 1 −1 −1 167.58
    6 150 700 0.8 1 −1 1 221.40
    7 150 1500 0.3 1 1 −1 247.96
    8 150 1 500 0.8 1 1 1 301.77
    9 42.73 1 100 0.55 −1.68 0 0 267.45
    10 177.27 1 100 0.55 1.68 0 0 266.72
    11 110 427.28 0.55 0 −1.68 0 260.62
    12 110 1 772.72 0.55 0 1.68 0 371.91
    13 110 1 100 0.13 0 0 −1.68 141.16
    14 110 1 100 0.97 0 0 1.68 231.66
    15 110 1 100 0.55 0 0 0 368.89
    16 110 1 100 0.55 0 0 0 378.68
    17 110 1 100 0.55 0 0 0 348.72
    18 110 1 100 0.55 0 0 0 388.89
    19 110 1 100 0.55 0 0 0 375.59
    20 110 1 100 0.55 0 0 0 386.58
    下载: 导出CSV

    表  4   标准条件下回归系数及P值

    Table  4   Coefficients and their P values in coded condition

    项目预测系数误差eFProb > F
    X1−16.371 16.236 8056.890 1660.025 4
    X222.035 616.236 80512.483 190.005 4
    X326.907 626.236 80518.613 420.001 5
    X12−35.301 96.071 36633.808 20.000 2
    X1 X225.966 258.148 77510.153 920.009 7
    X1 X3−0.001 258.148 7752.356 530.999 9
    X22−17.914 16.071 3668.705 9620.014 5
    X2X3−0.001 258.148 7752.354 330.999 9
    X32−63.824 96.071 366110.511 3< 0.000 1
    下载: 导出CSV

    表  5   模型的方差分析结果

    Table  5   Results of ANOVA test

    项目自由度 f平方和 SS均方值 MSFProb > F
    X1 1 3 660.20 3660.20 8.268 0.014
    X2 1 6 631.33 6631.33 14.980 0.002
    X3 1 9 887.83 9887.83 22.336 0.001
    X12 1 17 959.60 17959.60 40.570 <0
    X1X2 1 5 393.97 5393.97 12.185 0.005
    X22 1 4 624.78 4624.78 10.447 0.007
    X32 1 58 705.87 58705.87 132.614 <0
    模型 7 97 667.90 13952.56 31.518 <0
    下载: 导出CSV

    表  6   模型预测值与试验值比较

    Table  6   Comparison of model predicted value and experimental value

    因素转速
    n/(r·min−1)
    焊接速度
    v/(mm·min−1)
    轴肩压深
    h/mm
    抗拉强度Rm/MPa误差e(%)
    预测值试验值
    预测值11001100.553743691.33
    优化值14361100.553803770.79
    下载: 导出CSV
  • [1] 陈芙蓉, 贾翠玲. 7A52铝合金焊接及其接头表面纳米化研究现状[J]. 华东交通大学学报, 2019, 36(1): 1 − 11.

    Chen Furong, Jia Cuiling. Review on 7A52 aluminum alloy welding and its welded joint surface nanocrystallization[J]. Journal of East China Jiaotong University, 2019, 36(1): 1 − 11.

    [2]

    Jia Y, Qin Y, Ou Y, Wang K, et al. The influence of microstructural heterogeneity on mechanical properties of friction stir welded joints of T6-treated Al-Zn-Mg alloy 7A52[J]. Metals, 2018, 8: 527 − 538. doi: 10.3390/met8070527

    [3]

    Eivani A R, Vafaeenezhad H, Jafarian H R, et al. A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/ neuro-fuzzy computations and ultrasonic testing[J]. Journal of Magnesium and Alloys, 2021, 9(4): 1304 − 1328. doi: 10.1016/j.jma.2020.11.018

    [4] 赵军军, 张平, 王卫欣, 等. 7A52铝合金搅拌摩擦焊的焊缝成形[J]. 焊接学报, 2005, 26(5): 61 − 64. doi: 10.3321/j.issn:0253-360X.2005.05.016

    Zhao Junjun, Zhang Ping, Wang Weixin, et al. Weldbead shaping of friction stir welded 7A52 aluminum Alloy[J]. Transactions of the China Welding Institution, 2005, 26(5): 61 − 64. doi: 10.3321/j.issn:0253-360X.2005.05.016

    [5]

    Su H, Wu C S. Numerical simulation for the optimization of polygonal pin profiles in friction stir welding of aluminum[J]. Acta Metallurgica Sinica(English Letters), 2021, 34(8): 1065 − 1078. doi: 10.1007/s40195-021-01198-1

    [6]

    Chen D G, Liu J H, Ma Z H, et al. Microstructure and properties of welding joints of 7A52 aluminum alloy by the friction stir welding[J]. Applied Mechanics and Materials, 2014, 2948: 292 − 296.

    [7] 刘红伟, 周琦, 朱军, 等. 7A52铝合金厚板搅拌摩擦焊接头性能研究[J]. 兵器材料科学与工程, 2006, 29(3): 57 − 60. doi: 10.3969/j.issn.1004-244X.2006.03.016

    Liu Hongwei, Zhou Qi, Zhu Jun, et al. Research on joint properties of 7A52 aluminum alloy thick plate by friction stir welding[J]. Ordnance Material Science and Engineering, 2006, 29(3): 57 − 60. doi: 10.3969/j.issn.1004-244X.2006.03.016

    [8] 周鹏展, 钟掘, 贺地求. 7A52铝合金厚板搅拌摩擦焊[J]. 中国有色金属学报, 2006, 16(6): 964 − 969. doi: 10.3321/j.issn:1004-0609.2006.06.006

    Zhou Pengzhan, Zhong Jue, He Diqiu. Friction-stir welding on thick plate of 7A52 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(6): 964 − 969. doi: 10.3321/j.issn:1004-0609.2006.06.006

    [9]

    Sivabalan S, Sridhar R, Parthiban A, et al. Experimental investigations of mechanical behavior of friction stir welding on aluminium alloy 6063[J]. Materials Today:Proceedings, 2021, 37(2): 1678 − 1684.

    [10] 郝利新,贾瑞灵,张慧霞,等. 微弧氧化膜对7A52铝合金搅拌摩擦焊接头腐蚀不均匀性的影响[J]. 焊接学报, 2019, 40(3): 145 − 150.

    Hao Lixin, Jia Ruiling, Zhang Huixia, et al. Influence of micro-arc oxidation film on corrosion of inhomogeneity of 7A52 aluminum alloy friction stir welding joint[J]. Transactions of the China Welding Institution, 2019, 40(3): 145 − 150.

    [11]

    Yuvaraj K P, Ashoka V P, Boopathiraja K P. Optimization of process parameters on friction stir welding of AA7075-T651 and AA6061 joint using response surface methodology[J]. Materials Research Express, 2019, 6(9): 6558 − 6578.

    [12]

    Thanatkij S, Rapeepan P, Kanchana S, et al. Combined response surface method and modified differential evolution for parameter optimization of friction stir welding[J]. Processes, 2020, 8: 1080 − 1102. doi: 10.3390/pr8091080

    [13]

    Wasif S, Salman H, Ahmad W, et al. Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6using response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2016, 87: 1765 − 1781. doi: 10.1007/s00170-016-8565-9

    [14]

    Ramachandran K K, Murugan N, Kumar S S. Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method[J]. International Journal of Advanced Manufacturing Technology, 2016, 86: 2373 − 2392. doi: 10.1007/s00170-016-8337-6

图(2)  /  表(6)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  12
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回