高级检索

坡口角度及焊丝偏移量对钛/铝冷弧MIG焊接头显微组织与力学性能的影响

魏守征, 王志英, 任晓鹏, 王建国

魏守征, 王志英, 任晓鹏, 王建国. 坡口角度及焊丝偏移量对钛/铝冷弧MIG焊接头显微组织与力学性能的影响[J]. 焊接学报, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002
引用本文: 魏守征, 王志英, 任晓鹏, 王建国. 坡口角度及焊丝偏移量对钛/铝冷弧MIG焊接头显微组织与力学性能的影响[J]. 焊接学报, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002
WEI Shouzheng, WANG Zhiying, REN Xiaopeng, WANG Jianguo. Influence of bevel angle and wire offset on the microstructure and mechanical properties of Ti/Al joint by cold arc MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002
Citation: WEI Shouzheng, WANG Zhiying, REN Xiaopeng, WANG Jianguo. Influence of bevel angle and wire offset on the microstructure and mechanical properties of Ti/Al joint by cold arc MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 59-66. DOI: 10.12073/j.hjxb.20210317002

坡口角度及焊丝偏移量对钛/铝冷弧MIG焊接头显微组织与力学性能的影响

基金项目: 国家自然科学基金资助项目(51805492);山西省自然科学基金资助项目(201801D221149)
详细信息
    作者简介:

    魏守征,博士,副教授,导师. 主要从事有色金属材料的特种连接方向科研和教学工作; Email:20150067@nuc.edu.cn

  • 中图分类号: TG 457.19

Influence of bevel angle and wire offset on the microstructure and mechanical properties of Ti/Al joint by cold arc MIG welding

  • 摘要: 采用SAl 5183焊丝对TA2钛/5A05铝进行脉冲冷弧MIG焊. 研究钛侧坡口角度θ及焊丝偏移量d对接头成形及显微组织与力学性能的影响. 结果表明,坡口角度过小时,接头上部钛局部熔化而根部结合不良,Ti/Al界面组织差异大;坡口角度过大则出现焊缝下塌;坡口角度在30° ~ 45°范围内,Ti/Al界面组织差异小且结合良好. 焊丝偏向钛侧时,接头上部钛局部熔化而根部结合不良,Ti/Al界面组织差异大;焊丝向铝侧偏移过大则出现焊缝下塌;焊丝偏铝侧0 ~ 1 mm时,Ti/Al界面组织差异小且结合良好. 试验获得的优化工艺为坡口角度θ = 35°,焊丝偏铝d = 0.5 mm. 最佳工艺下,接头上部Ti/Al钎焊界面形成了Ti3.3Al和TiAl3两层金属间化合物;接头下部则通过形成一层TiAl3实现钎焊结合;接头平均抗拉强度达198 MPa.
    Abstract: Cold arc MIG welding of TA2 titanium and 5A05 aluminum alloy was conducted with SAl 5183 wire. The influence of bevel angle in titanium and wire offset on joint forming and the Ti/Al interfacial microstructure was studied. Partial melting of top titanium and poor bonding of the root appeared in the same joint when the bevel angle is too small. However, Weld sag was observed with too large bevel angles. With the bevel angle is in the range of 30° ~ 45°, good joint forming and sound interfacial combination along the thickness direction were observed. Partial melting of top titanium and poor bonding of the root appeared in the same joint when the welding wire was point to titanium side. Weld sag was observed with too large wire offset towards aluminum. Good joint forming and sound interfacial combination were observed with the wire offset towards aluminum was in the range of 0 ~ 1 mm. The optimal parameters obtained were that the bevel angle was 35° in titanium and the wire offset was 0.5 mm towards aluminum, the average tensile strength reached up to 198 MPa. The titanium and the weld metal were brazed by the formation of a Ti3.3Al layer and a TiAl3 layer in the upper region of the joint. While only a TiAl3 layer was formed between titanium and weld metal in the bottom region of the joint.
  • 图  1   坡口角度θ及焊丝偏移量d设计

    Figure  1.   The design for the bevel angle θ and the wire offset d

    图  2   θ对焊缝正、背面成形的影响

    Figure  2.   Influence of θ on the top and back views of the welds. (a) θ = 0°; (b) θ = 35°; (c) θ = 50°

    Figure  3.   Influence of θ on the Ti/Al interfacial microstructures. (a) top parts for θ = 0°; (b) top parts for θ = 35°; (c) top parts for θ = 50°; (d) root partsfor θ = 0° (be) root partsfor θ = 35°; (f) root partsfor θ = 50°

    图  4   θ对Ti/Al接头抗拉强度的影响

    Figure  4.   Influence of θ on the tensile strength of the Ti/Al joints

    图  5   θ对Ti/Al接头拉伸断裂位置的影响

    Figure  5.   Influence of θ on the broken area of the Ti/Al joints. (a) θ = 0°; (b) θ = 35°; (c) θ = 50°

    图  6   d对焊缝正、背面成形的影响

    Figure  6.   Influence of d on the top and back views of the welds. (a) d = −1.0 mm; (b) d = +2.0 mm

    图  7   d对接头Ti/Al界面组织的影响

    Figure  7.   Influence of d on the Ti/Al interfacial microstructures. (a) top parts for d = −1.0 mm; (b) top parts for d = +2.0 mm; (c) root parts for d = +2.0 mm; (d) root parts for d = −1.0 mm

    图  8   d对Ti/Al接头抗拉强度的影响

    Figure  8.   Influence of d on the tensile strength of the Ti/Al joints

    图  9   d对Ti/Al接头拉伸断裂位置的影响

    Figure  9.   Influence of d on the broken area of the Ti/Al joints. (a) d = −1.0 mm; (b) d = +2.0 mm

    图  10   Ti/Al界面附近XRD分析

    Figure  10.   XRD patterns for weld zone near Ti/Al interface

    图  11   Ti/Al界面反应层EDS分析

    Figure  11.   EDS analysis for the Ti/Al interfacial reaction zone.(a) top parts; (b) root parts

    表  1   母材及焊丝主要化学成分(质量分数,%)

    Table  1   The chemical compositions of the base materials and the filler

    材料SiFeCMgCuZnMnTiAl
    TA2≤ 0.15≤ 0.30≤ 0.10余量
    5A05Al≤ 0.50≤ 0.54.8 ~ 5.5≤ 0.05≤ 0.20.3 ~ 0.6余量
    SAl 51830.400.404.3 ~ 5.20.100.250.5 ~ 1.00.15余量
    下载: 导出CSV

    表  2   钛侧坡口角度θ设计

    Table  2   Design for the bevel angle θ in titanium

    参数1参数2参数3参数4参数5参数6参数7参数8
    010°20°30°35°40°45°50°
    下载: 导出CSV

    表  3   焊丝偏移量d设计(mm)

    Table  3   Design for the wire offset d

    参数1参数2参数3参数4参数5参数6参数7
    −1.0−0.50+0.5+1.0+1.5+2.0
    下载: 导出CSV

    表  4   选区EDS元素分析结果(原子分数,%)

    Table  4   Results of EDS analysis for the selected regions

    试验点TiAlMg
    A72.2627.490.25
    B22.7776.770.46
    C28.2071.200.60
    下载: 导出CSV
  • [1]

    Michael K, Florian W, Frank V. Laser processing of aluminum-titanium-tailored blanks[J]. Optics and Lasers in Engineering, 2005, 43: 1021 − 1035. doi: 10.1016/j.optlaseng.2004.07.005

    [2]

    Chen Shuhai, Li Liqun, Chen Yanbin, et al. Joining mechanism of Ti /Al dissimilar alloys during laser welding-brazing process[J]. Journal of Alloys and Compounds, 2011, 509(3): 891 − 898. doi: 10.1016/j.jallcom.2010.09.125

    [3]

    Wang Haodong, Yuan Xinjian, Li Ting, et al. TIG welding-brazing of Ti6Al4V and Al5052 in overlap configuration with assistance of zinc foil[J]. Journal of Materials Processing Technology, 2018, 251: 26 − 36. doi: 10.1016/j.jmatprotec.2017.08.015

    [4]

    Wei Shouzheng, Li Yajiang, Wang Juan, et al. Research on cracking initiation and propagation near Ti /Al interface during TIG welding of titanium to aluminium[J]. Kovove Mater - Metallic Materials, 2014, 52(2): 85 − 91.

    [5]

    Wei Shouzheng, Li Yajiang, Wang Juan, et al. Infuence of welding heat input on microstructure of Ti/Al joint during pulsed gas metal arc welding[J]. Materials Manufacturing Processes, 2014, 29: 954 − 960. doi: 10.1080/10426914.2014.880464

    [6]

    Wei Shouzheng, Li Yajiang, Wang Juan, et al. Microstructure and joining mechanism of Ti/Al dissimialr joint by pulsed gas metal arc welding[J]. International Journal of Advanced Manufacturing Technology, 2014, 70: 1137 − 1142. doi: 10.1007/s00170-013-5290-5

    [7] 魏守征, 韩玉杰, 王建国, 等. TA2/1060Al异质合金脉冲MIG熔钎焊[J]. 材料热处理学报, 2018, 39(2): 49 − 53.

    Wei Shouzheng, Han Yujie, Wang Jianguo, et al. Pulsed current MIG welding-brazing of TA2 /1060Al dissimilar metals[J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 49 − 53.

    [8] 魏守征, 王志英, 饶文姬, 等. Al-Mg焊丝的Ti6Al4V/5A05Al熔钎焊接接头的组织性能[J]. 材料热处理学报, 2019, 40(1): 149 − 154.

    Wei Shouzheng, Wang Zhiying, Rao Wenji, et al. Microstructure and properties of Ti6Al4V/5A05Al welded-brazed joint using Al-Mg filler[J]. Transactions of Materials and Heat Treatment, 2019, 40(1): 149 − 154.

    [9]

    Li Junzhao, Sun Qingjie, Liu Yibo, et al. Cold metal transfer welding-brazing of pure titanium TA2 to aluminum alloy 6061-T6[J]. Advanced Engineering Materials, 2017, 19(2): 1 − 8.

    [10]

    Sun Qingjie, Li Junzhao, Liu Yibo, et al. Microstructural characterization and mechanical properties of Al/Ti welded by CMT method-Assisted hybrid magnetic field[J]. Materials and Design, 2017, 116: 316 − 324. doi: 10.1016/j.matdes.2016.12.025

    [11]

    Miao Yugang, Ma Zhaowei, Yang Xiaoshan, et al. Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing[J]. Journal of Materials Processing Technology, 2018, 260: 104 − 111. doi: 10.1016/j.jmatprotec.2018.05.019

    [12]

    Wei Shouzheng, Rao Wenji, Li Zhiyong, et al. Cold arc MIG welding of titanium Ti6Al4V to aluminum 5A05Al using Al-Mg5 filler[J]. Metals and Materials International, 2020, 26(10): 1555 − 1561. doi: 10.1007/s12540-019-00402-3

    [13]

    Chen Shuhai, Li Liqun, Chen Yanbin, et al. Improving interfacial reaction non-homogeneity during laser welding-brazing aluminum to titanium[J]. Materials and Design, 2011, 32: 4408 − 4416. doi: 10.1016/j.matdes.2011.03.074

    [14] 刘艳梅, 武高辉, 修子扬, 陈国钦. Ti和Al反应的动力学分析[J]. 稀有金属材料与工程, 2015, 44(3): 599 − 602.

    Liu Yanmei, Wu Gaohui, Xiu Ziyang, et al. Analysis on kinetics process of Ti and Al reaction[J]. Rare Metal Materials and Engineering, 2015, 44(3): 599 − 602.

图(11)  /  表(4)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  13
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 网络出版日期:  2021-10-24
  • 刊出日期:  2021-08-30

目录

    /

    返回文章
    返回