高级检索

X80管线钢多道激光-MIG复合焊残余应力分析

严春妍, 张浩, 朱子江, 张可召, 顾正家, 王宝森

严春妍, 张浩, 朱子江, 张可召, 顾正家, 王宝森. X80管线钢多道激光-MIG复合焊残余应力分析[J]. 焊接学报, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001
引用本文: 严春妍, 张浩, 朱子江, 张可召, 顾正家, 王宝森. X80管线钢多道激光-MIG复合焊残余应力分析[J]. 焊接学报, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001
YAN Chunyan, ZHANG Hao, ZHU Zijiang, ZHANG Kezhao, GU Zhengjia, WANG Baosen. Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001
Citation: YAN Chunyan, ZHANG Hao, ZHU Zijiang, ZHANG Kezhao, GU Zhengjia, WANG Baosen. Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 28-34, 41. DOI: 10.12073/j.hjxb.20210312001

X80管线钢多道激光-MIG复合焊残余应力分析

基金项目: 国家自然科学基金资助项目(51804097);江苏省研究生科研创新计划项目(B200203154)
详细信息
    作者简介:

    严春妍,博士,副教授;主要研究方向为金属材料焊接性、水下焊接技术及高效焊接技术;Email:yancy_hhu@163.com

  • 中图分类号: TG 404

Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel

  • 摘要: 采用试验和数值模拟结合的方法对X80管线钢多道激光-MIG复合焊焊接过程的温度场和焊接残余应力场进行了研究,分析了激光功率对复合焊接头的显微组织、温度分布和残余应力分布的影响规律. 结果表明,激光功率增加,熔池最高温度明显上升,焊后冷却速度下降;粗晶热影响区组织中粒状贝氏体、针状铁素体增加,条状贝氏体减少. X80管线钢激光-MIG复合焊接头残余应力水平较高,纵向残余应力、横向残余应力和厚度方向残余应力的拉应力峰值均出现在焊缝区. 激光功率在2.0 ~ 3.5 kW范围时,等效残余应力、纵向残余应力、横向残余应力和厚度方向残余应力的峰值随着激光功率增加均出现下降趋势. 但激光功率从3.5 kW上升至4.0 kW时,各应力的峰值有所上升.
    Abstract: Combined experimental and numerical investigation of temperature field and residual stress field of X80 pipeline steel multi-pass hybrid laser-MIG welding were performed. Influence of laser power on microstructures, temperature distribution and residual stress distribution in the hybrid welded joints were analyzed. The results show that rising maximum temperature of the molten pool and decreasing post-welding cooling rate were obtained with increasing laser power. More acicular ferrite and granular bainite, less lath bainite formed in the coarse grained heat affected zone. Overall residual stress level in the X80 pipeline steel hybrid welded joints were high with peak tensile stress occurred in the weld metal for longitudinal stress, transverse stress and through-thickness stress. In the laser power range from 2.0 to 3.5 kW, peak stress of Von Mises equivalent stress, longitudinal stress, transverse stress and through-thickness stress all decreased with increasing laser power. However, peak stress of the stresses increased with laser power increasing from 3.5 kW to 4.0 kW.
  • 图  1   试样S2的有限元模型

    Figure  1.   Finite element model of specimen S2

    图  2   盖面层的焊缝区和热影响区显微组织(S2试样)

    Figure  2.   Microstructures in weld metal and HAZ of cap pass (specimen S2). (a) arc zone weld; (b) arc zone CGHAZ; (c) arc zone FGHAZ; (d) laser zone weld; (e) laser zone CGHAZ; (f) laser zone FGHAZ

    图  3   激光功率对盖面焊缝形貌参数的影响

    Figure  3.   Influence of laser power on cap weld geometry parameters

    图  4   试验与模拟所得焊缝截面比较

    Figure  4.   Comparison of experimental obtained and numerical predicted sectional morphology

    图  5   激光-MIG复合焊接温度场(试样S2)

    Figure  5.   Temperature field of laser-MIG welding of specimen S2. (a) root layer; (b) filler layer; (c) cap layer

    图  6   不同PL下典型位置的热循环曲线

    Figure  6.   Thermal cycles of representative points with different PL. (a) P1; (b) P2 and P3

    图  7   试样S2的残余应力分布

    Figure  7.   Residual stress distribution in specimen S2. (a) longitudinal residual stress σx; (b) transverse residual stress σy; (c) pleate thickness direction σz; (d) equivalent residual stress σVon

    图  8   试样S2横截面的残余应力分布

    Figure  8.   Residual stress distribution in the cross section of specimen S2. (a) longitudinal residual stress σx; (b) transverse residual stress σy; (c) plate thickness direction stress σz; (d) equivalent residual stress σVon

    图  9   残余应力在宽度方向的分布

    Figure  9.   Residual stress distribution along the width direction. (a) longitudinal residual stress σx; (b) transverse residual stress σy; (c) platethickness direction σz; (d) equivalent residualstress σVon

    表  1   X80钢和焊丝的主要化学成分(质量分数,%)

    Table  1   Main chemical compositions of X80 piepeline steel and filler wire

    材料CSiMnPSCrNiMo
    X80 0.030 0.240 1.710 0.008 0.002 0.022 0.250 0.190
    JM-80 0.081 0.670 1.560 0.018 0.008 0.330 0.011 0.008
    下载: 导出CSV

    表  2   X80管线钢复合焊工艺参数

    Table  2   HLAW welding parameters of X80 pipeline steel

    焊接方法试样编号激光功率
    PL/kW
    光丝间距
    d/mm
    焊接电流
    I/A
    电弧电压
    U/V
    焊接速度
    v/(m·min−1)
    离焦量
    f0/mm
    打底焊 S1,S2,S3,S4,S5 9.0 2.0 190 23 1.2 −1
    填充焊
    盖面焊
    S1 2.0 2.0 230 24 0.5 0
    S2 2.5 2.0 230 24 0.5 0
    S3 3.0 2.0 230 24 0.5 0
    S4 3.5 2.0 230 24 0.5 0
    S5 4.0 2.0 230 24 0.5 0
    下载: 导出CSV

    表  3   残余应力峰值

    Table  3   Peak residual stresses

    激光功率
    PL /kW
    纵向应力
    σx/MPa
    横向应力
    σy/MPa
    厚度方向应力
    σz/MPa
    等效应力
    σVon/MPa
    2.0623.85617.13589.49582.37
    2.5615.34607.76583.18573.61
    3.0607.71602.21573.76567.48
    3.5602.43600.54569.85559.54
    4.0609.27604.62576.03568.75
    下载: 导出CSV
  • [1]

    Erdelen-Peppler M, Hillenbrand H G, Kalwa C, et al. Investigations on the applicability of crack arrest predictions for high strength linepipe at low temperatures[J]. Steel in Translation, 2012, 42(3): 203 − 211. doi: 10.3103/S0967091212030047

    [2]

    Shinkin V N. Failure of large-diameter steel pipe with rolling scabs[J]. Steel in Translation, 2017, 47(6): 363 − 368. doi: 10.3103/S0967091217060109

    [3]

    Stolyarov V I, Pyshmintsev I Yu, Struin I O, et al. Large-diameter gas pipe produced at OAO Volzhskii Trubnyi Zavod[J]. Steel in Translation, 2009, 39(10): 927 − 929. doi: 10.3103/S0967091209100210

    [4] 常云峰, 雷振, 王旭友, 等. 铝合金激光-MIG 复合填丝焊稳定性分析[J]. 焊接学报, 2018, 39(10): 119 − 123.

    Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(10): 119 − 123.

    [5]

    Hammad A, Churiaque C, Sánchez-Amaya J M, et al. Experimental and numerical investigation of hybrid laser arc welding process and the influence of welding sequence on the manufacture of stiffened flat panels[J]. Journal of Manufacturing Processes, 2021, 61: 527 − 538. doi: 10.1016/j.jmapro.2020.11.040

    [6]

    Bunaziv I, Akselsen O M, Frostevarg J, et al. Application of laser-arc hybrid welding of steel for low-temperature service[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 2601 − 2613. doi: 10.1007/s00170-019-03304-1

    [7]

    Kim Y C, Hirohata M, Murakami M, et al. Effects of heat input ratio of laser-arc hybrid welding on welding distortion and residual stress[J]. Welding International, 2015, 29(4): 245 − 253. doi: 10.1080/09507116.2014.921039

    [8]

    Zhang H J, Wang Y, Han T, et al. Numerical and experimental investigation of the formation mechanism and the distribution of the welding residual stress induced by the hybrid laser arc welding of AH36 steel in a butt joint configuration[J]. Journal of Manufacturing Process, 2020, 51: 95 − 108. doi: 10.1016/j.jmapro.2020.01.008

    [9] 严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001

    Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001

    [10]

    Yan C Y, Liu C Y, Yan B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J]. Computational Materials Science, 2014, 83: 158 − 163. doi: 10.1016/j.commatsci.2013.11.007

    [11]

    Luo Y, Jiang W C, Wan Y, et al. Effect of helix angle on residual stress in the spiral welded oil pipelines: Experimental and finite element modeling[J]. International Journal of Pressure Vessels and Piping, 2018, 168: 233 − 245. doi: 10.1016/j.ijpvp.2018.10.015

图(9)  /  表(3)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  18
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回