Analysis of welding residual stress in multi-pass hybrid laser-MIG welded X80 pipeline steel
-
摘要: 采用试验和数值模拟结合的方法对X80管线钢多道激光-MIG复合焊焊接过程的温度场和焊接残余应力场进行了研究,分析了激光功率对复合焊接头的显微组织、温度分布和残余应力分布的影响规律. 结果表明,激光功率增加,熔池最高温度明显上升,焊后冷却速度下降;粗晶热影响区组织中粒状贝氏体、针状铁素体增加,条状贝氏体减少. X80管线钢激光-MIG复合焊接头残余应力水平较高,纵向残余应力、横向残余应力和厚度方向残余应力的拉应力峰值均出现在焊缝区. 激光功率在2.0 ~ 3.5 kW范围时,等效残余应力、纵向残余应力、横向残余应力和厚度方向残余应力的峰值随着激光功率增加均出现下降趋势. 但激光功率从3.5 kW上升至4.0 kW时,各应力的峰值有所上升.Abstract: Combined experimental and numerical investigation of temperature field and residual stress field of X80 pipeline steel multi-pass hybrid laser-MIG welding were performed. Influence of laser power on microstructures, temperature distribution and residual stress distribution in the hybrid welded joints were analyzed. The results show that rising maximum temperature of the molten pool and decreasing post-welding cooling rate were obtained with increasing laser power. More acicular ferrite and granular bainite, less lath bainite formed in the coarse grained heat affected zone. Overall residual stress level in the X80 pipeline steel hybrid welded joints were high with peak tensile stress occurred in the weld metal for longitudinal stress, transverse stress and through-thickness stress. In the laser power range from 2.0 to 3.5 kW, peak stress of Von Mises equivalent stress, longitudinal stress, transverse stress and through-thickness stress all decreased with increasing laser power. However, peak stress of the stresses increased with laser power increasing from 3.5 kW to 4.0 kW.
-
-
表 1 X80钢和焊丝的主要化学成分(质量分数,%)
Table 1 Main chemical compositions of X80 piepeline steel and filler wire
材料 C Si Mn P S Cr Ni Mo X80 0.030 0.240 1.710 0.008 0.002 0.022 0.250 0.190 JM-80 0.081 0.670 1.560 0.018 0.008 0.330 0.011 0.008 表 2 X80管线钢复合焊工艺参数
Table 2 HLAW welding parameters of X80 pipeline steel
焊接方法 试样编号 激光功率
PL/kW光丝间距
d/mm焊接电流
I/A电弧电压
U/V焊接速度
v/(m·min−1)离焦量
△f0/mm打底焊 S1,S2,S3,S4,S5 9.0 2.0 190 23 1.2 −1 填充焊
盖面焊S1 2.0 2.0 230 24 0.5 0 S2 2.5 2.0 230 24 0.5 0 S3 3.0 2.0 230 24 0.5 0 S4 3.5 2.0 230 24 0.5 0 S5 4.0 2.0 230 24 0.5 0 表 3 残余应力峰值
Table 3 Peak residual stresses
激光功率
PL /kW纵向应力
σx/MPa横向应力
σy/MPa厚度方向应力
σz/MPa等效应力
σVon/MPa2.0 623.85 617.13 589.49 582.37 2.5 615.34 607.76 583.18 573.61 3.0 607.71 602.21 573.76 567.48 3.5 602.43 600.54 569.85 559.54 4.0 609.27 604.62 576.03 568.75 -
[1] Erdelen-Peppler M, Hillenbrand H G, Kalwa C, et al. Investigations on the applicability of crack arrest predictions for high strength linepipe at low temperatures[J]. Steel in Translation, 2012, 42(3): 203 − 211. doi: 10.3103/S0967091212030047
[2] Shinkin V N. Failure of large-diameter steel pipe with rolling scabs[J]. Steel in Translation, 2017, 47(6): 363 − 368. doi: 10.3103/S0967091217060109
[3] Stolyarov V I, Pyshmintsev I Yu, Struin I O, et al. Large-diameter gas pipe produced at OAO Volzhskii Trubnyi Zavod[J]. Steel in Translation, 2009, 39(10): 927 − 929. doi: 10.3103/S0967091209100210
[4] 常云峰, 雷振, 王旭友, 等. 铝合金激光-MIG 复合填丝焊稳定性分析[J]. 焊接学报, 2018, 39(10): 119 − 123. Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Stability of laser-MIG hybrid welding process with filling wire for aluminum alloy[J]. Transactions of the China Welding Institution, 2018, 39(10): 119 − 123.
[5] Hammad A, Churiaque C, Sánchez-Amaya J M, et al. Experimental and numerical investigation of hybrid laser arc welding process and the influence of welding sequence on the manufacture of stiffened flat panels[J]. Journal of Manufacturing Processes, 2021, 61: 527 − 538. doi: 10.1016/j.jmapro.2020.11.040
[6] Bunaziv I, Akselsen O M, Frostevarg J, et al. Application of laser-arc hybrid welding of steel for low-temperature service[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8): 2601 − 2613. doi: 10.1007/s00170-019-03304-1
[7] Kim Y C, Hirohata M, Murakami M, et al. Effects of heat input ratio of laser-arc hybrid welding on welding distortion and residual stress[J]. Welding International, 2015, 29(4): 245 − 253. doi: 10.1080/09507116.2014.921039
[8] Zhang H J, Wang Y, Han T, et al. Numerical and experimental investigation of the formation mechanism and the distribution of the welding residual stress induced by the hybrid laser arc welding of AH36 steel in a butt joint configuration[J]. Journal of Manufacturing Process, 2020, 51: 95 − 108. doi: 10.1016/j.jmapro.2020.01.008
[9] 严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001 Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
[10] Yan C Y, Liu C Y, Yan B. 3D modeling of the hydrogen distribution in X80 pipeline steel welded joints[J]. Computational Materials Science, 2014, 83: 158 − 163. doi: 10.1016/j.commatsci.2013.11.007
[11] Luo Y, Jiang W C, Wan Y, et al. Effect of helix angle on residual stress in the spiral welded oil pipelines: Experimental and finite element modeling[J]. International Journal of Pressure Vessels and Piping, 2018, 168: 233 − 245. doi: 10.1016/j.ijpvp.2018.10.015