Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy
-
摘要: 采用相场法模拟研究了各向异性对合金焊接凝固裂纹敏感性的影响规律. 结果表明,随着各向异性强度的增加,枝晶尖端变得更加稳定,不易形成侧枝,枝晶间不易形成桥接,容易形成较长的液相通道. 当各向异性强度较大时,金属熔体难以通过长的液相通道对受拉位置进行补给,因此容易形成裂纹. 基于相场模拟结果,计算了凝固裂纹敏感性指数
$\left|{\rm{d}}T/{\rm{d}}{\left({f}_{{\rm{s}}}\right)}^{1/2}\right|$ ,发现各向异性强度较大时,$\left|{\rm{d}}T/{\rm{d}}{\left({f}_{{\rm{s}}}\right)}^{1/2}\right|$ 的数值也较大,具有较大的凝固裂纹敏感性. 综上,当合金各向异性强度越大时,具有较高的凝固裂纹敏感性.Abstract: Effects of anisotropy on the solidification cracking susceptibility in the molten pool of an Al-Cu alloy are investigated using phase field modeling. The results show that the tip of dendrites becomes stable, side-branches and bridges are difficult to form, and the longer liquid channel is easily formed between dendrites with the increase of anisotropic strength. In the case of large anisotropic strength, welding tensile stresses are difficult to transfer and release through bridging, and the metal melt is also difficult to supply the tensile position through the long liquid channel, so it is easy to form cracks. Based on the simulation results, the solidification cracking susceptibility index |dT/d(fs)1/2| is calculated. It is found that the index is higher when the anisotropic strength is larger. In conclusion, the solidification crack sensitivity is higher when the anisotropy strength is larger.-
Keywords:
- anisotropy /
- solidification crack /
- phase field
-
-
表 1 Al-4.0%Cu合金的物性参数
Table 1 Physical properties of the Al-4.0% Cu alloy
扩散系数,D/(10−9 m2·s−1) 液相线斜率m/(K·(wt.%)−1) 溶质分配系数 k Gibbs-Thomson
系数$ \varGamma $ /(10−7 K·m)各向异性强度 $ {\mathrm{\gamma }}_{4} $ 3.0 −2.6 0.48 2.4 0.01 ~ 0.05 -
[1] Kou S. Welding metallurgy[M]. 2nd edition. New Jersey: John Wiley and Sons, Inc., 2003.
[2] Kou S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88: 366 − 374. doi: 10.1016/j.actamat.2015.01.034
[3] Soysal T, Kou S. A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction[J]. Acta Materialia, 2017, 143: 181 − 197.
[4] 王磊. 2A14铝合金激光焊接熔池微观组织演变相场法研究[D]. 南京: 南京航空航天大学, 2018. Wang Lei. Phase field investigation on microstructure evolution in the laser welding pool of 2A14 aluminum alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[5] 余枫怡. 铝铜合金TIG焊熔池凝固过程组织演化的相场法模拟[D]. 南京: 南京航空航天大学, 2018. Yu Fengyi. The microstructure evolution of solidification process in the tungsten inert gas welding pool of aluminium-copper alloy: A phase-field study[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[6] 郑文健. Al-Cu合金焊接熔池凝固枝晶动态生长机制的相场研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. Zheng Wenjian. Phase field research on transient dendrite growth mechanism during the solidification of Al-Cu alloy welding pool[D]. Harbin: Harbin Institute of Technology, 2014.
[7] Geng S, Ping J, Shao X, et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study[J]. Acta Materialia, 2018, 150: 120 − 124.
[8] Wang L, Wang K. Investigation on microstructural patterns and hot crack in the molten pool via integrated finite-element and phase-field modeling[J]. Journal of Manufacturing Processes, 2019, 48: 191 − 198. doi: 10.1016/j.jmapro.2019.11.010
[9] Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification[J]. Physical Review E, 2004, 70(6): 061604. doi: 10.1103/PhysRevA.70.061604
[10] Katgerman D, Eskin D. Hot cracking phenomena in welds II: In search of the prediction of hot cracking in aluminium alloys[M]. Heidelberg: Springer, 2008.
[11] Geng S, Ping J, Shao X. Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study[J]. Scripta Materialia, 2018, 150: 120 − 124. doi: 10.1016/j.scriptamat.2018.03.013