高级检索

基于SPH法的爆炸焊接边界效应二维数值模拟

缪广红, 艾九英, 胡昱, 马宏昊, 沈兆武

缪广红, 艾九英, 胡昱, 马宏昊, 沈兆武. 基于SPH法的爆炸焊接边界效应二维数值模拟[J]. 焊接学报, 2021, 42(9): 61-66. DOI: 10.12073/j.hjxb.20210203002
引用本文: 缪广红, 艾九英, 胡昱, 马宏昊, 沈兆武. 基于SPH法的爆炸焊接边界效应二维数值模拟[J]. 焊接学报, 2021, 42(9): 61-66. DOI: 10.12073/j.hjxb.20210203002
MIAO Guanghong, AI Jiuying, HU Yu, MA Honghao, SHEN Zhaowu. Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 61-66. DOI: 10.12073/j.hjxb.20210203002
Citation: MIAO Guanghong, AI Jiuying, HU Yu, MA Honghao, SHEN Zhaowu. Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 61-66. DOI: 10.12073/j.hjxb.20210203002

基于SPH法的爆炸焊接边界效应二维数值模拟

基金项目: 国家自然科学基金资助项目(11902003,51874267);安徽省高校自然科学基金重点项目(KJ2017A089);高校优秀青年骨干人才国外访学研修项目(gxgwfx2019017)
详细信息
    作者简介:

    缪广红,博士,副教授;主要从事含能材料、爆炸复合及爆炸力学相关领域研究;E-mail:miaogh@mail.ustc.edu.cn

  • 中图分类号: TG 456.6

Two-dimensional numerical simulation of boundary effect of explosive welding based on SPH method

  • 摘要: 为了揭示造成爆炸焊接边界效应的机理,文中借助LS-DYNA软件,采用无网格的SPH法分别对复板厚度为2 mm、基板厚度为16 mm的Q235/Q235、TA2/Q235、304不锈钢/Q235复合板进行爆炸焊接边界效应的二维数值模拟. 观察不同组模拟过程中的复板飞行姿态,复板撕裂均发生在与基板碰撞之前. 当基板保持一致,炸药分别为乳化炸药与膨化铵油混合炸药,复板为TA2时均比复板为Q235钢以及304不锈钢的撕裂尺寸更大;当基板、复板均为Q235钢,乳化炸药条件下比膨化铵油混合炸药条件下复板的撕裂尺寸更大. 结果表明,在复板、炸药变化的情况下,爆炸焊接的边界效应依旧存在,只是产生的边界效应的严重程度有所不同;复板极限抗拉强度越低或炸药爆轰速度越高,边界效应现象越严重.
    Abstract: In order to reveal the mechanism of explosive welding boundary effect, LS-DYNA software and meshless SPH method is used to carry out two-dimensional numerical simulation of explosive welding boundary effect on TA2/Q235, Q235/Q235, Q235/TA2 and 304 stainless steel/Q235 composite plates respectively in this paper. The thickness of the flyer plate is 2 mm and the thickness of the based plate is 16 mm. By observing the flight attitude of the flyer plate in different simulation groups, it revealed that the tearing of the flyer plate occurs before the collision with the base plate. When the base plate is consistent and the explosives are emulsion explosives and expanded ammonium oil mixed explosives, the tearing size of the TA2 is larger than the Q235 steel and 304 stainless steel. When the base plate and flyer plate are made of Q235 steel, the tearing size of the flyer plate under the condition of emulsion explosive is larger than that under the condition of expanded ammonium oil mixed explosive. The above results show that the boundary effect of explosive welding still exists when the flyer plate and explosive change, but the severity of the boundary effect is different. The lower the ultimate tensile strength of the flyer plate or the higher the explosive velocity, the more serious the boundary effect phenomenon.
  • 图  1   计算模型

    Figure  1.   Calculation model

    图  2   乳化炸药下Q235/Q235钢爆炸焊模拟中复板的飞行姿态

    Figure  2.   Flight attitude of flyer plate in explosive welding simulation at different time under emulsion explosive. (a) t =6.3 μs; (b) t = 9.3 μs; (c) t = 12.5 μs; (d) t = 14.1 μs

    图  3   乳化炸药下TA2/Q235钢爆炸焊模拟中复板的飞行姿态

    Figure  3.   Flight attitude of flyer plate in explosive welding simulation at different time. (a) t =4.9 μs; (b) t = 7.6 μs; (c) t = 10 μs; (d) t = 13 μs

    图  4   膨化铵油混合炸药下Q235/Q235爆炸焊模拟中复板的飞行姿态

    Figure  4.   Flight attitude of flyer plate in explosive welding simulation at different time under expanded anfo mixed explosive. (a) t =7.1 μs; (b) t = 13.8 μs; (c) t = 16.8 μs; (d) t = 19.7 μs

    图  5   膨化铵油混合炸药下TA2/Q235爆炸焊模拟中复板的飞行姿态

    Figure  5.   Flight attitude of flyer plate in explosive welding simulation at different time under expanded anfo mixed explosive. (a) t = 6.1 μs; (b) t = 9.8 μs; (c) t = 12.6 μs; (d) t = 14 μs

    图  6   膨化铵油混合炸药下304不锈钢/Q235钢爆炸焊模拟中复板的飞行姿态

    Figure  6.   Flight attitude of flyer plate in explosive welding simulation at different time under expanded anfo mixed explosive. (a) t = 6.8 μs; (b) t = 13.1 μs; (c) t = 16.1 μs; (d) t = 17.9 μs

    图  7   爆炸焊中复板的飞行姿态

    Figure  7.   Flying attitude of the flyer plate in explosive welding

    图  8   复板起爆端的飞行姿态示意图

    Figure  8.   Flight attitude diagram of flyer plate initiation terminal

    图  9   复板末端的飞行姿态示意图

    Figure  9.   Flight attitude diagram of the end of flyer plate

    表  1   材料模型参数 (mm)

    Table  1   Material model parameter

    编号复板基板炸药
    材料(长×宽)/(mm × mm)材料(长×宽)/(mm × mm)材料炸药厚度d/mm
    1(对照)Q23530 × 2Q23530 × 16乳化10
    2Q23530 × 2Q23530 × 16膨化铵油10
    3TA230 × 2Q23530 × 16膨化铵油10
    4304不锈钢30 × 2Q23530 × 16膨化铵油10
    5TA230 × 2Q23530 × 16乳化10
    下载: 导出CSV

    表  2   乳化炸药与膨化铵油混合炸药的JWL状态参数

    Table  2   Parameters for JWL equation state of emulsion explosive and expanded ANFO mixed explosive

    材料炸药密度
    ρ/(g·cm−3)
    炸药爆轰速度
    D/(m·s−1)
    材料常数1
    AJWL /GPa
    材料常数2
    BJWL/GPa
    材料常数3
    R1
    材料常数4
    R2
    材料常数5
    ω
    初始比内能
    E0/(kJ·cm−3)
    乳化炸药1.124 510326.425.808 95.81.560.573.323
    膨化铵油混合炸药0.6812 43049.461.8913.9071.1180.3332.484
    下载: 导出CSV

    表  3   TA2钛合金、Q235钢和304不锈钢的Johnson-Cook模型参数

    Table  3   Johnson-Cook model parameters of TA2,Q235 steel and 304 stainless steel

    材料材料密度
    ρ/(g·cm−3)
    剪切模量
    G/GPa
    初始屈服应力
    A/GPa
    硬化模量
    B/GPa
    硬化指数
    n
    应变率强化参数
    C
    软化指数
    m
    金属熔点
    Tm/K
    室温
    Tr/K
    TA24.5143.40.4200.380.320.2200.701 942294
    Q2357.8377.00.7920.510.260.0141.031 793294
    3047.9024.00.7001.300.750.0210.901 710294
    下载: 导出CSV

    表  4   TA2钛合金、Q235钢和304不锈钢的Gruneisen方程参数

    Table  4   Gruneisen equation parameters of TA2,235 steel and 304 stainless steel

    材料体积声速
    c/(m·s−1)
    拟合系数
    S1
    Gruneisen系数
    γ
    体积校正系数
    A
    TA251301.0281.400.00
    Q23545691.4902.170.46
    30445801.4901.930.50
    下载: 导出CSV
  • [1]

    Li Xinjun, Mo Feng, Wang Xinhong, et al. Numerical study on mechanism of explosive welding[J]. Science and Technology of Welding and Joining, 2012, 17(1): 36 − 41. doi: 10.1179/1362171811Y.0000000071

    [2] 李晓杰, 莫非, 闫鸿浩, 等. 爆炸焊斜碰撞过程的数值模拟[J]. 高压物理学报, 2011, 25(2): 173 − 176. doi: 10.11858/gywlxb.2011.02.014

    Li Xiaojie, Mo Fei, Yan Honghao, et al. Numerical simulation of the oblique collision in explosive welding[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 173 − 176. doi: 10.11858/gywlxb.2011.02.014

    [3] 郑远谋. 爆炸焊和爆炸复合材料[M]. 北京: 国防工业出版社, 2017.

    Zheng Yuanmou. Explosive welding and explosive composite materials [M]. Beijing: National Defense Industry Press, 2017.

    [4] 刘鹏, 陆明, 冀鑫炜, 等. 爆炸焊TA2/Q235钢复合板末端开裂的原因[J]. 机械工程材料, 2012, 36(1): 48 − 51.

    Liu Peng, Lu Ming, Ji Xinwei, et al. Reasons of end-cracking of explosively welded TA2/Q235 steel composite plates[J]. Materials for Mechanical Engineering, 2012, 36(1): 48 − 51.

    [5] 李选明, 焦永刚. TA10合金厚板与钢爆炸焊边界效应的产生与消除[J]. 稀有金属快报, 1999(10): 5 − 6.

    Li Xuanming, Jiao Yonggang. The formation and elimination of the boundary effect of the explosive welding of TA10 alloy thick plate and steel[J]. Rare Metal Letters, 1999(10): 5 − 6.

    [6] 王飞, 王连来, 崔人伟. 爆炸焊边界效应作用机理研究[J]. 爆破器材, 2004(S1): 96 − 100.

    Wang Fei, Wang Lianlai, Cui Renwei. Research on the boundary effect mechanism of explosive welding[J]. Explosive Materials, 2004(S1): 96 − 100.

    [7]

    Miao Guanghong, Li Liang, Jiang Xiangyang, et al. Numerical simulation on boundary effect in explosive cladding by smoothed particle hydrodynamics[J]. Chinese Journal of Energetic Materials, 2017, 25(9): 762 − 766.

    [8]

    Hamed Niroumand, Mohammad Emad Mahmoudi Mehrizi, Maryam Saaly. Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior[J]. Geomechanics and Engineering, 2016, 11(1): 1 − 39. doi: 10.12989/gae.2016.11.1.001

    [9] 缪广红. 蜂窝结构炸药与双面爆炸复合的研究[D]. 合肥: 中国科学技术大学, 2015.

    Miao Guanghong. Research on the combination of honeycomb structure explosive and double-sided explosion [D]. Hefei: University of Science and Technology of China, 2015.

    [10] 肖定军, 郭学彬, 蒲传金. 单孔护壁爆破数值模拟[J]. 化工矿物与加工, 2008(7): 22 − 24. doi: 10.3969/j.issn.1008-7524.2008.07.007

    Xiao Dingjun, Guo Xuebin, Pu Chuanjin. Numerical simulation of single-hole wall protection blasting[J]. Industrial Minerals and Processing, 2008(7): 22 − 24. doi: 10.3969/j.issn.1008-7524.2008.07.007

    [11] 赵星宇, 白春华, 姚箭, 等. 燃料空气炸药爆轰产物JWL状态方程参数计算[J]. 兵工学报, 2020, 41(10): 1921 − 1929. doi: 10.3969/j.issn.1000-1093.2020.10.001

    Zhao Xingyu, Bai Chunhua, Yao Jian, et al. Parameters calculation of JWL EOS of FAE detonation products[J]. Acta Armamentarii, 2020, 41(10): 1921 − 1929. doi: 10.3969/j.issn.1000-1093.2020.10.001

    [12]

    Joshua E Gorfain, Christopher T Key. Damage prediction of rib-stiffened composite structures subjected to ballistic impact[J]. International Journal of Impact Engineering, 2013, 57: 159 − 172. doi: 10.1016/j.ijimpeng.2013.02.006

    [13] 舒畅, 程礼, 许煜. Johnson-Cook本构模型参数估计研究[J]. 中国有色金属学报, 2020, 30(5): 1073 − 1083.

    Shu Chang, Cheng Li, Xu Yu. Research on parameter estimation of Johnson-Cook constitutive model[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(5): 1073 − 1083.

    [14] 饶常青. 不锈钢/普碳钢厚板坯的爆炸复合[D]. 南京: 南京理工大学, 2003.

    Rao Changqing. Explosive compounding of stainless steel/plain carbon steel thick slabs[D]. Nanjing: Nanjing University of Science and Technology, 2003.

    [15] 杨文彬, 奚进一, 孙明, 等. 爆炸复合板边界效应研究[J]. 计算力学学报, 1998, 15(2): 236 − 238.

    Yang Wenbin, Xi Jinyi, Sun Ming, et al. Study on the boundary effect of explosive composite plates[J]. Chinese Journal of Computational Mechanics, 1998, 15(2): 236 − 238.

  • 期刊类型引用(4)

    1. 谢勇,肖雨辰,唐会毅,王云春,侯兴哲,吴华,吴保安,谭生,孙玲. 射频组件用键合金带的研究进展. 电子与封装. 2024(05): 5-12 . 百度学术
    2. 孟志永,吉星照,张秀清,倪永婧,于国庆,张明. 接地共面波导与芯片级联结构设计与优化. 河北科技大学学报. 2024(04): 373-380 . 百度学术
    3. 任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法. 工矿自动化. 2023(02): 85-93 . 百度学术
    4. 杨东升,张贺,冯佳运,撒子成,王晨曦,田艳红. 电子封装微纳连接技术及失效行为研究进展. 焊接学报. 2022(11): 126-136+169 . 本站查看

    其他类型引用(4)

图(9)  /  表(4)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  32
  • PDF下载量:  26
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-02-02
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2021-09-29

目录

    /

    返回文章
    返回