高级检索

铝合金双轴肩搅拌摩擦焊过程材料流动行为

刘西畅, 李文亚, 高彦军, 温泉

刘西畅, 李文亚, 高彦军, 温泉. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002
引用本文: 刘西畅, 李文亚, 高彦军, 温泉. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002
LIU Xichang, LI Wenya, GAO Yanjun, WEN Quan. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002
Citation: LIU Xichang, LI Wenya, GAO Yanjun, WEN Quan. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002

铝合金双轴肩搅拌摩擦焊过程材料流动行为

基金项目: 凝固技术国家重点实验室(西北工业大学)自主研究课题资助项目(2021-TZ-01)
详细信息
    作者简介:

    刘西畅,硕士研究生;主要研究方向为搅拌摩擦焊接过程的数值模拟及材料流动行为;Email:1440025932@qq.com

    通讯作者:

    李文亚,博士,教授,博士研究生导师;Email:liwy@nwpu.edu.cn.

  • 中图分类号: TG453.9

Material flow behavior during bobbin-tool friction stir welding of aluminum alloy

  • 摘要: 由于下轴肩的引入,双轴肩搅拌摩擦焊(BT-FSW)过程中的材料流动行为较常规搅拌摩擦焊更为剧烈和复杂,显著影响接头力学性能. 以2219铝合金为研究对象,基于耦合欧拉-拉格朗日方法建立了BT-FSW过程三维热力耦合模型,并利用示踪粒子技术分析了焊接过程中材料的流动行为. 结果表明,BT-FSW过程中的材料流动存在不同时性,靠近轴肩的材料先开始运动,且流动剧烈,随着逐渐远离轴肩位置,材料流动愈加滞后,但流动状态更加平稳;水平方向上前进侧材料作为剪切层内侧材料,绕搅拌针旋转后大部分沉积于搅拌头后方前进侧区域,而后退侧材料仅受到剪切层内侧材料的带动,进而被旋推至后方沉积;厚度方向上塑性材料在抵达搅拌头后方焊缝中心线前流动较弱,随后材料受到上、下轴肩挤压向板材中心流动.
    Abstract: Compared with friction stir welding (FSW), the material flow behavior during the bobbin-tool FSW (BT-FSW) process is more intense and complicated due to the presence of lower shoulder, which severely affects the mechanical properties of the joint. In this paper, a 3D thermo-mechanical coupling model of BT-FSW 2219 aluminum alloy was established based on the coupled Eulerian-Lagrangian (CEL) method and the material flow behavior during the BT-FSW process was investigated by using tracer particles. The results show that the material flow in the BT-FSW process is inconsistent. The material near both shoulders moves in advance, showing violent behavior. The farther away from the shoulder, the more lagging and stable material flow. As the inner material of the shear layer, the material on the advancing side of the weld rotates around the pin in the horizontal direction and most is deposited on the advancing side area behind the tool. While the material on the retreating side is only driven by the material in the inner layer of the shear layer, and most is pushed to deposit behind the weld. In the thickness direction, the plastic material shows weak flow before reaching the welding center line behind the tool. And the material is squeezed by both shoulders to flow toward the center of the plate after it enters the advancing side area behind the tool.
  • 双丝熔化极气体保护焊是一种高效的焊接工艺,具有焊接速度快,熔深容易控制等优点. 双丝焊系统由两台独立的逆变弧焊电源和一台送丝驱动机组成,两弧焊电源采用同步控制以获得最佳的熔滴分离以及金属过渡的精确定时[1]. 由于两台弧焊电源同时工作,且双丝弧焊电源输出功率较大,功率器件快速开关产生的谐波对主电路稳定工作和控制信号检测造成影响,同时也对电网产生干扰. 此外,电网中存在的各种谐波也会对弧焊电源造成干扰,为此需要考虑电磁兼容性设计. 目前常用的方法是在弧焊电源三相输入端串联电感,降低谐波干扰,电路结构简单,但由于电感感值较大,影响电路的动态性能. 为此提出一种软开关与LCL滤波器相结合的弧焊电源主电路,提高系统的电磁兼容性[2]. 一方面采用软开关逆变拓扑结构,通过降低dv/dt,在减小功率器件开关应力、提高可靠性的同时,降低谐波的幅值;另一方面通过三相输入端设计的LCL低通滤波器获得较好的滤波效果[3].

    带LCL滤波的软开关双丝弧焊电源的结构如图1所示,LCL滤波器由网侧电感${L_{\rm{g}}}$、软开关侧电感${L_{\rm{f}}}$、电容器${C_{\rm{f}}}$和阻尼电阻${R_{\rm{c}}}$组成(${R_{\rm{g}}}$${R_{\rm{f}}}$为电感阻抗);软开关电路由换流电容${C_1}$${C_2}$,隔点电容${C_{\rm{b}}}$和饱和电感${L_{\rm{b}}}$等组成;电源负载为${R_{\rm{L}}}$.

    图  1  带LCL滤波的ZVZCS软开关拓扑图
    Figure  1.  ZVZCS soft switching topology with LCL filter

    ZVZCS在超前臂${Q_1}$${Q_2}$两端并联较大的电容,在变压器原侧电路串入一个饱和电感${L_{\rm{b}}}$和一个隔直电容${C_{\rm{b}}}$. 通过超前臂并联电容的充放电实现超前臂零电压开通,隔直电容${C_{\rm{b}}}$实现续流期间电流快速衰减到零,借助饱和电感${L_{\rm{b}}}$对反向电流的阻止作用实现滞后臂${Q_3}$${Q_4}$的零电流关断[4].

    弧焊电源采用硬开关全桥拓扑结构时,开关管在通断过程中会产生较高的dv/dt和di/dt,当IGBT关断时,高频变压器的漏感产生反电动势,即

    $$E = - L{{{{\rm{d}}i}} / {{{\rm{d}}t}}}$$ (1)

    根据基尔霍夫定律,硬开关结构中的输入电压为

    $$\begin{split} &\\ & U = 2{U_{\rm{i}}} + {U_{\rm{C}}} + L{{{{\rm{d}}i}} / {{{\rm{d}}t}}} \end{split}$$ (2)

    式中:${U_{\rm{i}}}$为IGBT关断电压;${U_{\rm{C}}}$为电路分布电容电压,变压器漏感产生的反电动势加在关断电压上,通过试验可观察到高达800 V以上的电压尖峰,增大了谐波的幅值. 当IGBT开通时,由于分布电容和电压不能突变,产生浪涌电流,也造成严重的传导干扰. 软开关弧焊电源可以减小由于功率器件开关造成的谐波幅值,但并不能完全消除[5].

    图1所示的电路结构里,LCL滤波器的作用对于弧焊电源是双向的,一方面减小电网谐波对弧焊电源的影响,保证逆变软开关可靠地工作,另一方面抑制逆变器由于功率器件开关对电网的谐波干扰. LCL滤波器具有较好的滤波效果,但其本身存在谐振问题,电流中某频次谐波可能引发滤波器谐振,导致系统不稳定. 可通过串联电阻的改进LCL滤波器解决这一问题.

    LCL滤波器是利用电感电容对不同频率分量呈现阻抗的差异性特点进行工作[6],电容支路阻抗小,对含有高次谐波的软开关干扰电流/电网谐波电流进行并联阻抗分流,从而降低注入电网/软开关的谐波电流分量. 假设弧焊电源侧电流的谐波分量只有开关频率次谐波,LCL滤波器的等效电路图如图2所示,此时软开关侧看作谐波源,而网侧看作是短路.

    图  2  开关频率下LCL滤波器单相等效电路图
    Figure  2.  Single phase equivalent circuit of LCL filter under switching frequency

    图2可知,支路${Z_{\rm{g}}} = {R_{\rm{g}}} + j{\omega _{{\rm{sw}}}}{L_{\rm{g}}}$与支路${Z_{\rm{C}}} = {R_{\rm{C}}} - j\dfrac{1}{{{\omega _{{\rm{sw }}}}{C_{\rm{f}}}}}$${i_{\rm{i}}}({h_{{\rm{sw}} }})$分流,不考虑阻尼电阻,应用分流公式可得

    $$\dfrac{{{i_{\rm{g}}}({h_{{\rm{sw}} }})}}{{{i_{\rm{i}}}({h_{{\rm{sw}} }})}} = \dfrac{{\dfrac{1}{{s{C_{\rm{f}}}}}}}{{s{L_{\rm{g}}} + \dfrac{1}{{s{C_{\rm{f}}}}}}} = \dfrac{1}{{{L_{\rm{g}}}{C_{\rm{f}}}{s^2} + 1}}$$ (3)

    $s = j{\omega _{{\rm{sw}} }}$代入式(1)中可得

    $$\frac{{{i_{\rm{g}}}({h_{{\rm{sw}} }})}}{{{i_{\rm{i}}}({h_{{\rm{sw}} }})}} = \left| {\frac{1}{{1 - {L_{\rm{g}}}{C_{\rm{f}}}{\omega _{{\rm{sw}} }}^2}}} \right|$$ (4)

    式中:${Z_{\rm{g}}}$表示网侧之路阻抗;${Z_{\rm{C}}}$表示电容支路阻抗;${\omega _{{\rm{sw}} }}$表示开关频率次谐波;${i_{\rm{g}}}({h_{{\rm{sw}} }})$表示网侧电感电流;${i_{\rm{i}}}({h_{{\rm{sw}} }})$表示软开关侧电感电流;s为变换算子.

    将设计好的电感电容值代入,可以得出${{{i_{\rm{g}}}}/ {{i_{\rm{i}}}}}$在开关频率处的值为$2.53 \times {10^{ - 4}}$,值很小,滤波效果很好,将二倍、三倍开关频率谐波代入,得出${{{i_{\rm{g}}}} / {{i_{\rm{i}}}}}$的值分别为$6.31 \times {10^{ - 5}}$$2.8 \times {10^{ - 5}}$,谐波得到明显抑制,同时更高次谐波的影响可忽略不计.同理,LCL滤波器对电网谐波的抑制原理相同,得到对电网谐波电流的分流公式为

    $$ \frac{{{i_{\rm{i}}}({h_{{\rm{sw}} }})}}{{{i_{\rm{g}}}({h_{{\rm{sw}} }})}} = \left| {\frac{1}{{1 - {L_{\rm{f}}}{C_{\rm{f}}}{\omega _{{\rm{sw}} }}^2}}} \right| $$ (5)

    可以得出LCL滤波器对电网中频率为4 kHz的谐波抑制到3.94%,对更高频率谐波滤波效果更好. LCL滤波器滤波效果如图3${G_2}$图像所示.

    LCL滤波器在谐振频率处发生谐振,为尽量避免谐振,设计时一般是将其谐振频率设定在10倍电网频率 ~ 0.5倍开关频率之间[7],同时需要在滤波电容处串入阻尼电阻来抑制谐振. 滤波电容没有串联电阻时,根据基尔霍夫定律可推导出三阶LCL滤波器在三相电网电压稳定对称情况下的数学模型[8],即

    图  3  Bode图
    Figure  3.  Bode diagram. (a) amplitude; (b) phase angle
    $$\begin{split} & {L_{\rm{g}}}\frac{{{d_{{i_1}}}(t)}}{{{d_t}}} + {R_{\rm{g}}}{i_1}(t) + {L_{\rm{f}}}\frac{{{d_{{i_2}}}(t)}}{{{d_t}}} + {R_{\rm{f}}}{i_2}(t) = \\ & e(t) - \left[ {{V_{{\rm{dc}}}}(t){S_{\rm{K}}}(t) + {V_{{\rm{NO}}}}(t)} \right] \end{split} $$ (6)
    $${i_2}(t) = {i_1}(t) - {C_f}\frac{{d{V_{\rm{C}}}(t)}}{{{d_t}}}$$ (7)
    $${C_{\rm{d}}}\frac{{d{V_{{\rm{dc}}}}(t)}}{{{\rm{d}}t}} = \sum\nolimits_{k = a,b,c} {{i_k}(t){S_{\rm{K}}}(t) - {i_{\rm{L}}}(t)} $$ (8)
    $${V_{{\rm{NO}}}}(t) = - \frac{{{V_{{\rm{dc}}}}(t)}}{3}\sum\nolimits_{k = a,b,c} {{S_{\rm{K}}}(t)} $$ (9)

    式中:${V_{{\rm{dc}}}}$${i_{\rm{L}}}$${C_{\rm{d}}}$分别为整流模块直流侧电压、负载电流以及支撑电容;${i_1}$为网测电流;${i_2}$为软开关侧电流;${V_{\rm{C}}}$为LCL电容器电压;${S_{\rm{K}}}$为整流二极管的通断状态函数,上桥臂通态下桥臂断态时为1,上桥臂断态下桥臂通态时为0.

    由式(4) ~ 式(7)可以得出在滤波电容没有串联阻尼时,整流模块输入电压与电流在静止坐标系下的函数关系为(电阻${R_{\rm{g}}}$${R_{\rm{f}}}$相对于感抗忽略不计)

    $${G_1}(s) = \frac{{{I_2}(s)}}{{V(s)}} = \frac{{ - 1}}{{{s^3}{L_{\rm{g}}}{L_{\rm{f}}}{C_{\rm{f}}} + s({L_{\rm{g}}} + {L_{\rm{f}}})}}$$ (10)

    当滤波电容串联阻尼电阻${R_{\rm{C}}}$时,同理根据基尔霍夫定律推导出串联阻尼的三阶LCL滤波器在三相电网电压稳定对称情况下的数学模型,进而得到整流模块输入电压与电流在静止坐标系下的函数关系式为[9]

    $$\begin{split} & {G_2}(s) = \frac{{{I_2}(s)}}{{U(s)}} = \\ & \frac{{ - (s{R_{\rm{C}}}{C_{\rm{f}}} + 1)}}{{{s^3}{L_{\rm{g}}}{L_{\rm{f}}}{C_{\rm{f}}} + {s^2}({L_{\rm{g}}} + {L_{\rm{f}}}){R_{\rm{C}}}{C_{\rm{f}}} + s({L_{\rm{g}}} + {L_{\rm{f}}})}} \end{split} $$ (11)

    分别做出${G_1}(s)$${G_2}(s)$幅值的伯德图进行比较,容易发现${G_1}(s)$幅频图有较大的幅值尖峰,证明谐波电流在峰值处被放大,串联阻尼电阻后,${G_2}(s)$幅频图没有大幅度的峰值,抑制了谐振的发生,提高了系统稳定性,并且幅频特性图像显示LCL滤波器对谐波的抑制作用符合要求. 将滤波电容串联电阻的LCL滤波器加在网侧与整流模块之间,就对电网与软开关之间的相互谐波干扰起抑制作用,达到良好的滤波效果.

    为了验证上述分析,分别对硬开关弧焊电源、ZVZCS软开关弧焊电源和带LCL滤波的ZVZCS软开关弧焊电源的工作过程进行仿真,对网侧电流和变压器原侧电流进行谐波分析. 结果分别如图4 ~ 图6所示. 其中带LCL滤波的ZVZCS软开关电路的隔直电容${C_{\rm{b}}}$=22 μF,饱和电感${L_{\rm{b}}} = 360\;{\rm{\text{μ} H}}$,超前臂并联电容${C_1} = {C_2} = 10\;{\rm{nF}}$,LCL滤波器的参数设置为${L_{\rm{g}}} = 30\;{\rm{mH}}$${L_{\rm{f}}} = 5\;{\rm{mH}}$${C_{\rm{f}}} = 330\;\text{μ} {\rm{F}}$${R_{\rm{c}}} = $$ 9.76\;\Omega$.

    图  4  硬开关电流谐波分析
    Figure  4.  Harmonic analysis of hard switching. (a) grid current; (b) transformer primary current
    图  6  LCL滤波的ZVZCS软开关电流谐波分析
    Figure  6.  Harmonic analysis of ZVZCS soft switch with LCL filter. (a) grid current; (b) transformer primary current

    对比分析发现ZVZCS软开关的变压器原侧电流谐波畸变率从硬开关的22.24%下降到15.95%,网侧电流谐波畸变率由于没有滤波设备抑制电网谐波干扰,并没有得到显著改善,但开关频率次谐波得到了良好抑制. 带LCL滤波的ZVZCS软开关网侧谐波畸变率得到了显著改善,下降到1.05%,完全符合入网标准,并且变压器原侧电流谐波也得到了良好的控制.

    图  5  ZVZCS软开关电流谐波分析
    Figure  5.  Harmonic analysis of ZVZCS soft switching. (a) grid current;(b) transformer primary current

    (1) ZVZCS软开关弧焊电源相比于硬开关电源可以抑制逆变器尖峰电压,减少逆变器对电网谐波干扰,可以减少变压器原侧电流谐波,使变压器原侧电流谐波畸变率从硬开关的22.24%下降到15.95%,提高电源效率.

    (2)滤波电容串联电阻的LCL滤波器既可以抑制弧焊电源对电网的谐波干扰,使电网侧谐波畸变率下降到1.05%,减少对电网的污染;也可以抑制电网中的谐波对弧焊电源的干扰,提高弧焊电源的可靠性.

  • 图  1   搅拌头简化示意图

    Figure  1.   Simplified schematic diagram of the BT-FSW tool. (a) geometry of the BT-FSW tool;(b) simplified tool;(c) top surface profile of the BT-FSW joint

    图  2   几何模型与网格划分

    Figure  2.   Geometric model and meshing. (a) BT-FSW geometric model;(b) meshing near weld

    图  3   2219-T87铝合金热物理性能参数

    Figure  3.   Thermo-physical performance parameters of AA2219-T87. (a) Young’s modulus and Poisson’s ratio;(b) thermal conductivity and specific heat capacity

    图  4   BT-FSW模型边界条件

    Figure  4.   Boundary conditions of BT-FSW model. (a) thermal boundary condition;(b) displacement boundary condition

    图  5   测温/标记材料位置(mm)

    Figure  5.   Locations of thermocouple and tracer material

    图  6   验证试验/数值模拟结果对比

    Figure  6.   Comparison of the simulated and experimental results. (a) temperature profile;(b) tracer material distribution

    图  7   焊接稳定阶段温度场

    Figure  7.   Temperature field in the stable stage of welding. (a) temperature cloud map;(b) temperature distribution on the center line of the weld cross section

    图  8   焊缝横截面等效塑性应变分布

    Figure  8.   Equivalent plastic strain distribution of weld cross section

    图  9   材料流动速度场分布

    Figure  9.   Material flow velocity field distribution

    图  10   示踪粒子分布示意图(mm)

    Figure  10.   Schematic diagram of tracer particle distribution

    图  11   示踪粒子不同时刻分布(I)

    Figure  11.   Distribution of tracer particles at different times (I)

    图  12   示踪粒子不同时刻分布(II)

    Figure  12.   Distribution of tracer particles at different times (II). (a) near by the shoulders;(b) near by the probe

    图  13   示踪粒子不同时刻分布(III)

    Figure  13.   Distribution of tracer particles at different times (III). (a) near by the shoulders;(b) near by the probe;(c) initial position of tracer particles

    表  1   2219-T87铝合金Johnson-Cook本构参数

    Table  1   Material parameters in Johnson-Cook constitutive model for 2219-T87 aluminum alloy

    准静态拉伸屈服
    强度A/MPa
    应变硬化系数
    B/MPa
    应变硬化
    指数n
    应变速率硬化
    系数C
    参考应变速率
    ${\dot \varepsilon _{\rm{0}}}$/s−1
    热软化
    指数m
    材料熔点
    Tm/℃
    室温
    Tr/℃
    1702280.310.0280.0012.7554325
    下载: 导出CSV
  • [1]

    Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction welding: EP19940120385[P]. 1995-07-05.

    [2]

    Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding: US5460317[P]. 1995-10-24.

    [3] 周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006

    Zhou Li, Liu Chaolei, Wang Ji, et al. Research progress in self-reacting friction stir welding technology[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006

    [4]

    Zhao S, Bi Q Z, Wang Y H, et al. Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 1105 − 1118. doi: 10.1007/s00170-016-9450-2

    [5]

    Li Gaohui, Zhou Li, Zhang Haifeng, et al. Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding[J/OL]. Chinese Journal of Aeronautics, 2020. https://doi.org/ 10.1016/j.cja.2020.05.037.

    [6]

    Li W Y, Fu T, Huetsch L, et al. Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Materials & Design, 2014, 64(12): 714 − 720.

    [7]

    Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia, 2015, 102: 95 − 98. doi: 10.1016/j.scriptamat.2015.02.022

    [8]

    Xu W F, Liu H J, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys and Compounds, 2011, 509(33): 8449 − 8454. doi: 10.1016/j.jallcom.2011.05.118

    [9] 龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017

    Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017

    [10] 胡晓晴. 基于示踪材料的双轴肩搅拌摩擦焊流场研究[D]. 镇江: 江苏科技大学, 2015.

    Hu Xiaoqing. Research on the flow field of bobbin tool friction stir welding based on tracer material[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.

    [11]

    Hilgert J, Dos Santos J F, Huber N. Shear layer modelling for bobbin tool friction stir welding[J]. Science and Technology of Welding & Joining, 2010, 17(6): 454 − 459.

    [12] 李继忠, 赵华夏, 栾国红. 铝合金搅拌摩擦焊物理场三维数值模拟[J]. 焊接学报, 2016, 37(5): 15 − 18.

    Li Jizhong, Zhao Huaxia, Luan Guohong. 3D numerical simulation of physical fields of friction stir welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(5): 15 − 18.

    [13]

    Singh P, Biswas P, Kore S D. A three-dimensional fully coupled thermo- mechanical model for self-reacting friction stir welding of aluminium AA6061 sheets[J]. Journal of Physics Conference Series, 2016, 759(1): 1 − 6.

    [14] 王非凡. Al-Li合金双轴肩搅拌摩擦焊成形机制及性能研究[D]. 西安: 西北工业大学, 2016.

    Wang Feifan. Investigation on joint formation mechanism and mechanical properties of bobbin tool friction stir welding of Al-Li alloys[D]. Xi’an: Northwestern Polytechnical University, 2016.

    [15]

    Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2679 − 2687. doi: 10.1007/s00170-018-2750-y

    [16] 陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011

    Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011

    [17]

    Bastier A, Maitournam M H, Van K D. Steady state thermalmechnical modelling of friction stir welding[J]. Scinece and Technology of Welding & Joining, 2006, 11(3): 278 − 288.

    [18] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294

    Wu Chuansong, Su Hao, Shi Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294

    [19]

    Cao J Y, Wang M, Kong L, et al. Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 89: 2129 − 2139.

    [20] 徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66.

    Xu Weifeng, Liu Hejin, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.

    [21] 张子群. 铝合金2219弧板件铣削力建模及其对残余应力的影响规律研究[D]. 济南: 山东大学, 2018.

    Zhang Ziqun. Milling force modeling of alloy 2219 arc plates and its influence on residual stress[D]. Jinan: Shandong University, 2018.

    [22]

    Tutunchilar S, Haghpanahi M, Besharati Givi M K, et al. Simulation of material flow in friction stir processing of a cast Al-Si alloy[J]. Materials & Design, 2012, 40: 415-426.

    [23]

    Wang H, Colegrove P A, Dos Santos J F. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy[J]. Computational Materials Science. 2013, 71: 101-108.

    [24] 朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299.

    Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.

    [25]

    Zhang H J, Wang M, Zhang X, et al. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy[J]. Materials & Design, 2015, 65: 559 − 566.

    [26]

    Esmaily M, Mortazavi N, Osikowicz W, et al. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles[J]. Materials & Design, 2016, 108: 114 − 125.

    [27]

    Zhou L, Li G H, Liu C L, et al. Microstructural characteristics and mechanical properties of Al-Mg-Si alloy self-reacting friction stir welded joints[J]. Science and Technology of Welding and Joining, 2017, 22(5): 438 − 445. doi: 10.1080/13621718.2016.1251733

  • 期刊类型引用(9)

    1. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    2. 马付建,李锡伟,陈绍,付典颐,沙智华,张生芳. 6061铝合金超声辅助搅拌摩擦焊温度场分析. 焊接学报. 2024(08): 41-51 . 本站查看
    3. 杨夏炜,孟廷曦,褚强,范文龙,苏宇,马铁军,李文亚. 铝合金双面搅拌摩擦焊接的研究进展. 机械工程学报. 2024(14): 77-96 . 百度学术
    4. 冯家铖,宫文彪,鞠川,李于朋,孙雨萌,朱芮. 2024铝合金双轴肩搅拌摩擦焊接头热循环及组织特征. 吉林大学学报(工学版). 2024(11): 3184-3191 . 百度学术
    5. 尹德猛,李充,姚肖洁,郝文波,王崴,杨彦龙. 6082-T6铝合金双轴肩搅拌摩擦焊接头成形及力学性能. 焊接. 2023(06): 38-43 . 百度学术
    6. 温泉,李文亚,吴雪猛,任寿伟,赵静. AA6056双轴肩搅拌摩擦焊接头非均匀性分析. 焊接学报. 2023(09): 88-94+134 . 本站查看
    7. 温泉,李文亚,吴雪猛,任寿伟,赵静. 单静止上轴肩BT-FSW工艺过程及成形机理. 焊接学报. 2022(07): 88-96+118-119 . 本站查看
    8. 邹阳帆,李文亚,褚强,苏宇. 焊接速度对BT-FSW 2219铝合金接头流动行为及组织与力学性能影响分析. 焊接学报. 2022(11): 56-62+165-166 . 本站查看
    9. 牛文涛,谢吉林,黄永德,张昊,陈玉华. 搅拌头轴肩形状对6061铝合金FSW过程中轴向力的影响. 焊接学报. 2021(07): 66-73+102 . 本站查看

    其他类型引用(5)

图(13)  /  表(1)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  70
  • PDF下载量:  39
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-12-27
  • 网络出版日期:  2021-04-18
  • 刊出日期:  2021-03-30

目录

/

返回文章
返回