Digital twin modeling method for temperature field of friction stir welding
-
摘要: 作为制造技术数字化与智能化的关键技术,数字孪生技术的发展对现有建模方法提出了新的要求. 其中,信息与物理的实时融合是数字孪生建模方法中的关键. 以搅拌摩擦焊(FSW)为例,建立了一种可在“移动热源法”数值模拟中实时融入实测温度数据的迭代式信息-物理融合算法,并论证了基于此对焊接温度场进行实时复刻的可行性. 算例试算表明,此迭代式信息-物理融合算法具有较高的可靠性,基于迭代式信息-物理融合算法的计算得到的温度相对实测温度的平均误差在5 ℃以内. 此外,采用时间步长1.5 s或2.0 s时,计算所消耗的时间将少于焊接的物理过程时间. 这使得“移动热源法”数值模拟与FSW物理过程能够以秒级的时间精度进行同步. 因此,将传感器数据实时融入与物理过程同步的数值模拟模型,是实现焊接过程数字孪生的一种可行方法.Abstract: As the key technology of digitalization and intelligentization of manufacturing, the development of digital twins (DT) technology has put forward new requirements for new simulation methods. Real-time cyber-physics fusion is a key aspect of digital twins. Taking friction stir welding (FSW) as example, a novel iterative cyber-physical fusion algorithm to realize the real-time calculation of the 3D temperature field is established. The viability of real-time simulation of 3D temperature field in FSW is demonstrated. The result shows that the proposed algorithm has high reliability, and the average error of the temperature calculated based on the proposed algorithm relative to the measured temperature in experiment is within 5 ℃. It is interesting to mention that, if a time step of 1.5 s or 2.0 s is utilized, the calculation time will be shorter than the physical process of welding. This enables numerical simulation and FSW physical processes to be synchronized with a second-level temporal precision. It is proved that integrating real-time sensor data into numerical simulation model synchronizing with physical process can be a practical method of realizing digital twin modeling of welding process.
-
Keywords:
- friction stir welding /
- digital twin /
- welding process /
- temperature field /
- numerical simulation
-
-
表 1 测温点的位置坐标
Table 1 Coordinate of probe locations
测温点编号 x/mm y/mm z/mm 1 −12.5 3.0 0.0 2 −2.5 4.0 0.0 3 7.5 6.0 0.0 4 17.5 7.5 0.0 -
[1] Tao F, Sui F Y, Liu A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935 − 3953. doi: 10.1080/00207543.2018.1443229
[2] Zhang M, Zuo Y, Tao F. Equipment energy consumption management in digital twin shop-floor: A framework and potential applications[C]//IEEE. 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). Zhuhai, China, 2018: 1 − 5.
[3] Zheng Y, Yang S, Cheng H C. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1141 − 53. doi: 10.1007/s12652-018-0911-3
[4] Soderberg R, Warmefjord K, Carlson J S, et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. Cirp Annals-Manufacturing Technology, 2017, 66(1): 137 − 140. doi: 10.1016/j.cirp.2017.04.038
[5] Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing[J]. Acta Materialia, 2017, 135: 390 − 399. doi: 10.1016/j.actamat.2017.06.039
[6] Liu J L, Zhu H, Jiang Y, et al. Evolution of residual stress field in 6N01 aluminum alloy friction stir welding joint[J]. China Welding, 2018, 27(4): 18 − 26.
[7] 马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11. Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11.
[8] 曾申波, 陈高强, 张弓, 等. T形接头角接静轴肩搅拌摩擦焊三维流动特征[J]. 焊接学报, 2019, 40(12): 1 − 5. Zeng Shenbo, Chen Gaoqiang, Zhang Gong, et al. Three-dimensional flow characteristics of the T-joint by corner stationary shoulder friction stir welding[J]. Transactions of the China Welding Institution, 2019, 40(12): 1 − 5.
[9] Chen G Q, Zhang S, Zhu Y C, et al. Thermo-mechanical analysis of friction stir welding: a review on recent advances[J]. Acta Metallurgica Sinica-English Letters, 2020, 33(1): 3 − 12. doi: 10.1007/s40195-019-00942-y
[10] Schmidt H, Hattel J, WERT J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(1): 143 − 57. doi: 10.1088/0965-0393/12/1/013
[11] Yang C Y. Inverse determination of heat input during the friction stir welding process[J]. International Journal of Heat and Mass Transfer, 2014, 76: 411 − 418. doi: 10.1016/j.ijheatmasstransfer.2014.04.036
[12] Lambiase F, Di Ilio A, Paoletti A. Hybrid numerical modeling of friction assisted joining[J]. Journal of Manufacturing Processes, 2020, 57: 233 − 243. doi: 10.1016/j.jmapro.2020.06.031
[13] Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50(1−2): 1 − 78. doi: 10.1016/j.mser.2005.07.001
[14] Nandan R, Debroy T, Bhadeshia H K D H. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Progress in Materials Science, 2008, 53(6): 980 − 1023. doi: 10.1016/j.pmatsci.2008.05.001
[15] Shi L, Wu C S, Liu H J. Modeling the material flow and heat transfer in reverse dual-rotation friction stir welding[J]. Journal of Materials Engineering and Performance, 2014, 23(8): 2918 − 2929. doi: 10.1007/s11665-014-1042-4
[16] Yan D Y, Wu A P, Silvanus J, et al. Predicting residual distortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation[J]. Materials & Design, 2011, 32(4): 2284 − 2291.
[17] Feng Z, Wang X L, David S A, et al. Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6[J]. Science and Technology of Welding and Joining, 2007, 12(4): 348 − 356. doi: 10.1179/174329307X197610
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)