高级检索

镁合金铸件氦-氩保护TIG焊修复工艺

Repair process of magnesium alloy casting by He-Ar mixed gas TIG welding

  • 摘要: 镁合金因其较高的比强度而在诸多领域发挥重要的减重作用,且多为铸造构件,但镁合金铸件的缺陷问题成为制造瓶颈. 对镁合金铸件修复工艺进行研究,采用非熔化极惰性气体保护焊(TIG焊)探究此工艺下不同保护气体对TIG焊修复焊道的成形、组织特征及性能的影响,并通过不同氦-氩含量的保护气体下TIG焊电弧形态及电弧电压的研究,分析氦气含量对修复焊道熔深的影响. 结果表明,调整镁合金铸件TIG焊修复工艺保护气体中的氦气比例,会改善焊道形貌;增加保护气体中的氦气比例,将有效提高焊道熔深和深宽比;保护气体中氦气含量的改变对修复焊道组织、硬度无显著影响. 模拟缺陷修复试验结果表明,镁合金铸件氦-氩保护TIG修复工艺可以满足铸件浅层缺陷修复需求,增加保护气体中氦气含量可提高熔深,提高此工艺的适用性.

     

    Abstract: Magnesium alloy plays an important role in weight-loss because of its high specific strength, most of magnesium alloy components are casting. The defects of magnesium alloy castings become a manufacturing bottleneck issue. The repair process of magnesium alloy castings by tungsten inert gas (TIG) welding was studied, the effects of protect gas on the form, microstructure and properties of TIG repair beads were examined. The effects of helium content on the penetrations of welding beads were analyzed through the arc shape and arc voltage of TIG welding under different helium content. The results showed that the form of the weld bead could be improved by changing the helium content, the penetration and the penetration to width ratio could be improved by increasing the helium content, with no obvious effect on the microstructure and the hardness. The results of the simulating defect repair experiments showed that, the He-Ar mixed gas TIG welding repair process could repair shallow defects of magnesium alloy castings, increasing the helium content in the protect gas could increase the penetration and the suitability of this repair process.

     

/

返回文章
返回