高级检索

5056铝合金稳恒磁控激光深熔焊接过程熔池流动与传热行为分析

陈纪城, 陈小梅, 常怡婷, 刘学军, 魏艳红

陈纪城, 陈小梅, 常怡婷, 刘学军, 魏艳红. 5056铝合金稳恒磁控激光深熔焊接过程熔池流动与传热行为分析[J]. 焊接学报, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003
引用本文: 陈纪城, 陈小梅, 常怡婷, 刘学军, 魏艳红. 5056铝合金稳恒磁控激光深熔焊接过程熔池流动与传热行为分析[J]. 焊接学报, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003
CHEN Jicheng, CHEN Xiaomei, CHANG Yiting, LIU Xuejun, WEI Yanhong. Melt flow and thermal transfer of welding pool during static magnetic field supported deep-penetration laser beam welding of 5056 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003
Citation: CHEN Jicheng, CHEN Xiaomei, CHANG Yiting, LIU Xuejun, WEI Yanhong. Melt flow and thermal transfer of welding pool during static magnetic field supported deep-penetration laser beam welding of 5056 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 63-69. DOI: 10.12073/j.hjxb.20201217003

5056铝合金稳恒磁控激光深熔焊接过程熔池流动与传热行为分析

基金项目: 中国博士后科学基金面上项目(2020M671479);江苏高校优势学科建设工程资助项目(PAPD).
详细信息
    作者简介:

    陈纪城,博士,博士后;主要从事磁控激光焊接及凝固过程数值建模与仿真研究;Email:chenjicheng1990@163.com.

    通讯作者:

    魏艳红,博士,教授,博士研究生导师;Email:yhwei@nuaa.edu.cn.

  • 中图分类号: TG 456.7

Melt flow and thermal transfer of welding pool during static magnetic field supported deep-penetration laser beam welding of 5056 aluminum alloy

  • 摘要: 针对外加稳恒磁场条件下6 mm厚度5056铝合金激光深熔焊接过程,建立了热场—流场—电磁场耦合熔池瞬态动力学数值模型,求解了特定时刻温度场、速度场与电磁场分布,建立了熔池沿不同方向的Peclet数模型,分析了不同磁场感应强度对熔池流动与传热行为的影响. 结果表明,稳恒磁场条件下熔池中产生显著的哈特曼效应,表现为液态金属Marangoni对流减弱,流速降低,热对流机制对熔池形貌的贡献减弱,使得熔池沿焊接方向长度明显收缩,固—液界面曲率减小;同时,磁控熔池表面及内部出现热迟滞效应,表现为液相峰值温度升高,温度梯度增大,热扩散速率提高,熔池的局部尺寸得以增大. 铝合金磁控激光深熔焊过程焊缝形貌的变化是哈特曼效应与热迟滞效应共同作用的结果.
    Abstract: The transient thermo-flow-electromagnetic dynamic numerical model was proposed for the simulation of deep-penetration laser beam welding of 6 mm thick 5056 aluminum alloy under an external static magnetic field. The transient temperature, velocity and electromagnetic fields were calculated and the modeling of Peclet number within the welding pool was conducted. The influence of varying magnetic flux densities on molten flow and thermal transfer behavior was analyzed. The results shown that, significant Hartmann effect could be induced in the weld pool with static magnetic field aligned, resulting in Marangoni convection compression, melt flow deceleration and intensity reduction of thermal convection. Accordingly, the weld pool length contracted along the welding direction, and the solid-liquid interface became less curved. Meanwhile, the thermal hysteresis effect occurred at weld pool surface and inside. The local molten metal was heated and the temperature gradient was increased, leading to the increase of thermal diffusion rate and local extension of weld pool dimensions. The variations of seam profile in magnetically supported laser beam welding attributed to the synthetic actions of Hartmann effect and thermal hysteresis.
  • 核反应堆包层结构经受着极其恶劣的服役环境,要求其在长期服役过程中保持结构和冶金的完整性. 9Cr-1.5W-0.15Ta耐热钢具有较低的辐照肿胀系数和热膨胀系数、较高的热导率等优异的热物理性能和良好的力学性能,被认为是核聚变/裂变发堆包层结构的理想候选材料之一[1-4].

    为了减小热影响区宽度,保持接头良好的组织性能,多采用低热输入、高能量密度的特种焊接技术对9Cr-1.5W-0.15Ta耐热钢进行焊接[5-7]. 搅拌摩擦焊(Friction stir welding, FSW)是一种新型固态塑性连接技术,焊接热输入较低,可以保持焊缝性能与母材相近,焊接变形和残余应力较小等的特点[8-9]. 与搅拌摩擦焊相比,电子束焊(electron beam welding,EBW)是一种高效率、高能量密度的熔化焊接方法,具有焊接冶金质量好、焊接熔深大和焊接热影响区窄的特点,具有适用性强、操作简便等优势[10-11]. 因此,对比研究9Cr-1.5W-0.15Ta耐热钢搅拌摩擦焊缝和电子束焊缝组织和力学性能的差异具有重要意义.

    文中对9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的微观组织、硬度和冲击性能进行比较,分析微观组织与力学性能之间的关联性,并论述接头的断裂机制.

    试验采用的母材为9Cr-1.5W-0.15Ta耐热钢,其化学成分如表1所示. 母材热处理工艺如下:1000 ℃下正火保温60 min,水淬之后在700 ℃下回火60 min. 搅拌摩擦焊机为北京赛福斯特技术有限公司生产的FSW-3LM-020型设备,搅拌头的材料为W-25%Re合金. 焊接工艺参数为焊接速度60 mm/min,焊接转速300 r/min和焊接压力10 kN. 电子束焊机选择KL110型真空电子束焊机设备. 焊接加速电压60 kV,焊接电流30 mA,焊接速度600 mm/min,在全聚焦状态下以束流垂直于板面的方式进行焊接.

    沿垂直于焊接方向切取尺寸为25 mm × 10 mm的试样,经过粗磨、细磨和抛光后,在5 g FeCl3, 20 mL盐酸和100 mL蒸馏水的腐蚀液中侵蚀90 s制备金相试样. 采用光学显微镜(OLYMPUS GX51)和电子扫描显微镜(SEM,TDCLSU 1510)对接头区域的微观组织进行观察. 采用型号为Tecnai G2F30透射电子显微镜在300 kV加速电压下观测析出相.

    低温冲击试验试样尺寸如图1所示,冲击试验后,采用电子扫描显微镜观测冲击试样断口形貌. 硬度试验是在金相试样上焊缝区域测试,载荷为9.8 N,加载时间为15 s.

    表  1  9Cr-1.5W-0.15Ta耐热钢化学成分(质量分数,%)
    Table  1.  Chemical composition of the 9Cr-1.5W-0.15Ta heat resistant steel
    CCrMnVWTaSiZrNSPFe
    0.190.50.21.50.150.050.0050.0070.0020.002余量
    下载: 导出CSV 
    | 显示表格
    图  1  焊缝低温冲击试样取样位置和几何尺寸(mm)
    Figure  1.  Dimension and position of impact toughness testing sample in the weld

    9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝的微观组织如图2所示. 图2a, b是9Cr-1.5W-0.15Ta耐热钢母材的微观组织,由于经过正火、淬火和回火等热处理后,具有完全的回火的组织特征,晶粒尺寸大约为20 μm,并在原奥氏体晶界和晶内形成均匀分布的析出相(M23C6和MX). 电子束焊缝的微观组织如图2c, d所示,其特点为晶粒粗大,组织不均匀,且晶界处的M23C6析出相和晶内MX析出相均发生完全溶解. 虽然电子束焊能量密度较大,熔池中心温度高,但其高温停留时间短,焊后冷却速度较大,因此在熔合线形成较大的温度梯度,促进粗大的树枝状组织的形成. 从焊缝两边生长的晶粒在焊缝中心处相遇,形成了垂直于母材原始晶粒取向的组织结构.

    图2e, f为搅拌摩擦焊缝的微观组织. 在焊接过程中,焊缝由于受到搅拌针剧烈的搅拌而引起严重的塑性变形和摩擦,产生的局部高温作用使得组织发生动态再结晶,加之焊后冷却速率较大,发生马氏体转变[12]. 因此,搅拌摩擦焊缝的组织由回火组织转变为板条马氏体. 焊缝区域晶粒发生明显细化,这是由于该区域受到搅拌针的机械作用,动态再结晶的晶粒发生破碎而细化. 此外,在搅拌摩擦焊缝中晶界上的M23C6析出相发生完全溶解,而晶内依然存在球状MX析出相,这表明焊缝区域经历的焊接热循环峰值温度高于M23C6相的熔点(860 ℃)、但低于MX相熔点(1310 ℃)[13-14].

    图  2  母材、电子束焊缝和搅拌摩擦焊缝的微观组织特征
    Figure  2.  Microstructure of base metal, EBW weld and FSW weld. (a) metallographic of base metal; (b) SEM microstructure of base metal; (c) metallographic of EBW weld; (d) SEM microstructure of EBW weld; (e) metallographic of FSW weld; (f) SEM microstructure of FSW weld

    图3为母材和搅拌摩擦焊缝中析出相特征. 母材中M23C6碳化物和球状MX相分别均匀地分布在原奥氏体晶界和晶内(图3a, b). 焊后晶界处M23C6碳化物发生完全溶解,球状MX碳氮化物无明显变化,但对位错产生强烈的钉扎作用,同时在板条马氏体内生成大量的针状M3C相,主要由W,Cr,Fe和C组成(图3c ~ 3f). 这主要是由于M23C6碳化物的溶解在晶界和晶内之间产生C和Cr原子的浓度梯度,同时焊接过程中的奥氏体化再结晶和马氏体转变诱导位错和空位等晶格缺陷增殖,为针状M3C碳化物析出提供了形核质点和原子扩散通道,促进了M3C碳化物的析出[15].

    图  3  母材和搅拌摩擦焊缝析出相的特征
    Figure  3.  Characteristics of precipitates for base metal and FSW weld. (a) M23C6 phase in base metal; (b) MX phase in base metal; (c) M23C6 phase in FSW weld; (d) MX phase in FSW weld; (e) M3C phase in FSW weld; (f) energy spectrum of M3C phase

    表2为母材、电子束焊缝和搅拌摩擦焊缝硬度结果. 相比于9Cr-1.5W-0.15Ta耐热钢的硬度(272 HV),两种焊缝的硬度明显增大,电子束焊缝硬度值为475 HV,搅拌摩擦焊缝硬度值为425 HV. 焊缝区明显硬化,这是由于在焊接过程中焊接热循环峰值温度高于母材的相变温度,在焊后快速冷却导致焊缝中形成大量的板条状马氏体组织,使得焊缝的硬度增大[16-17].

    表  2  母材、电子束焊缝和搅拌摩擦焊缝显微硬度(HV)
    Table  2.  Microhardness of the base metal, EB and FSW welds
    母材EBW焊缝FSW焊缝
    272475425
    下载: 导出CSV 
    | 显示表格

    图4是9Cr-1.5W-0.15Ta耐热钢母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击吸收能量. 由图可知,母材的冲击吸收能量为34.35 J,搅拌摩擦焊焊缝冲击吸收能量为31.1 J,而电子束焊焊缝的冲击吸收能量为4.2 J,仅为母材的12.2%和搅拌摩擦焊缝的13.5%.

    图  4  母材、电子束焊缝和搅拌摩擦焊缝在−20 ℃下的冲击韧性
    Figure  4.  Impact toughness of base materials, EBW and FSW welds at −20 ℃

    接头的力学性能主要取决于其微观组织特征. 与母材相比,搅拌摩擦焊接头韧性稍有降低,这是焊缝区晶粒细化、高角度晶界增加阻碍裂纹扩展而改善接头韧性和位错密度增加而恶化冲击性能的共同结果[18-20]. 除此之外,残余奥氏体的存在也对改善接头韧性具有重要影响[21]. 相比于搅拌摩擦焊接头,电子束焊接头韧性显著降低,这主要是由于在焊缝中树枝状组织的形成,使焊缝韧性明显降低. 另外,电子束焊接过程中热输入较大,引起晶粒粗化和析出相溶解等组织变化,对接头的冲击韧性产生重要影响.

    图5为母材、电子束焊缝和搅拌摩擦焊缝试样冲击后的断口形貌. 由于微观组织特征的差异,导致焊接接头力学性能的不同,同时也在冲击断口形貌上表现明显的不同. 母材的冲击断口形貌表现为典型的韧窝特征,并且韧窝大小和形状存在明显差别,发现小尺寸韧窝密度远多于大尺寸韧窝(图5a). 电子束焊缝冲击断口则表现为典型的解理断裂,同时局部还可以发现较深的裂纹(图5b). 搅拌摩擦焊缝冲击断口形貌均表现为大小和形状均匀的韧窝特征,在部分韧窝底部存在第二相粒子脱落的现象,并且由于冲击变形而形成少量的撕裂痕,断裂方式属于微孔聚集型断裂(图5c). 综上,母材和搅拌摩擦焊缝的冲击断裂方式属于典型的延性断裂,而电子束焊缝的冲击断裂方式属于脆性断裂.

    图  5  冲击试样的断口形貌
    Figure  5.  Fracture morphology of impact specimens. (a) base metal; (b) EBW weld; (c) FSW weld

    电子束焊缝和搅拌摩擦焊缝的冲击断口形貌与母材有不同程度的差异. 在搅拌摩擦焊缝中,由于发生动态再结晶,晶粒尺寸明显细化,同时仅部分低熔点析出相溶解,冲击断口表现尺寸较大的韧窝特征,导致冲击韧性发生稍稍降低. 然而,对于电子束焊缝,微观组织为粗大的树枝状晶,并且析出相均发生溶解,导致在冲击过程中协调变形能力变弱,断口表现为典型的解理断裂特征. 因此,电子束焊缝的冲击韧性显著降低.

    (1) 9Cr-1.5W-0.15Ta耐热钢电子束焊缝呈树枝状晶微观组织,晶粒粗大,组织不均匀,且析出相均发生溶解;搅拌摩擦焊缝则由细小、均匀的板条马氏体微观组织组成,部分晶界析出相发生溶解.

    (2) 由于在焊缝中有大量板条马氏体生成,9Cr-1.5W-0.15Ta耐热钢电子束焊缝和搅拌摩擦焊缝的硬度值均发生了显著增大,电子束焊缝的硬度值最高可达到475 HV.

    (3) 两种焊缝的冲击韧性均低于母材,但由于电子束焊缝和搅拌摩擦焊缝中晶粒尺寸、析出相的差异,不同焊缝表现不同的力学性能. 电子束焊缝的冲击吸收能量仅为母材的12.2%;搅拌摩擦焊缝的力学性能较好,其冲击吸收能量为母材的90%.

  • 图  1   磁控激光焊接计算域模型

    Figure  1.   Computational domain for MSLBW

    图  2   模拟的熔池轮廓与焊缝截面形貌对比

    Figure  2.   Comparison between simulated weld pool profile and weld cross-section morphology. (a) B0 = 0; (b) B0 = 0.24 ~ 0.3 T

    图  3   5056铝合金稳恒磁控激光焊接过程温度与速度分布

    Figure  3.   Temperature and velocity distributions during static MSLBW process of 5056. (a) B0,+y = 0, temperature; (b) B0,+y = 0.3 T, temperature; (c) B0,+y = 0.6 T, temperature; (d) B0,+y = 0, velocity magnitude; (e) B0,+y = 0.3 T, velocity magnitude; (f) B0,+y = 0.6 T, velocity magnitude

    图  4   磁控激光焊接熔池上表面温度与速度值一维分布

    Figure  4.   1-D distributions of temperature and velocity magnitude on top surface of weld pool during MSLBW. (a) temperature—x coordinate curve; (b) velocity magnitude—x coordinate curve

    图  5   磁控激光焊接熔池Peclet数分布

    Figure  5.   Peclet number distributions of weld pool during MSLBW. (a) Peclet number distribution in x direction; (b) Peclet number distribution in z direction

    表  1   5056-T6 铝合金化学成分 (质量分数, %)

    Table  1   Chemical compositions of 5056-T6 aluminum

    MgSiCuFeCrZnMnAl
    4.60.250.100.400.200.090.10余量
    下载: 导出CSV

    表  2   稳恒磁控激光焊接工艺参数

    Table  2   Critical parameters of static MSLBW

    试验编号激光功率P/kW焊接速度u0/(m·s−1)磁感应强度B0/T
    13.80.020
    23.80.020.18 ~ 0.23
    33.80.020.24 ~ 0.30
    下载: 导出CSV

    表  3   5056-T6铝合金的热物理性能参数

    Table  3   Thermo-physical properties of 5056-T6 aluminum alloy

    密度
    ρ/(kg·m−3)
    固相线
    Ts/K
    液相线
    Tl/K
    沸点
    Tv /K
    热导率(Tl)
    k/(W·m−1·K−1)
    比热(Tl)
    Cp/(J·kg−1·K−1)
    动力粘度
    η/(Pa·s)
    电导率(Tl)
    σ/(S·m−1)
    磁导率(Tl)
    μ/(H·m−1)
    26488509362 700691 1811.45 × 10−33.87 × 1061.26 × 106
    下载: 导出CSV

    表  4   稳恒磁控激光焊接熔池特征长度与特征速度

    Table  4   Characteristic length and characteristic velocity of welding pool during static MSLBW process

    初始磁感应强度
    B0,+y / T
    x方向特征长度
    Lx/mm
    z方向特征长度
    Lz/mm
    x方向特征速度${\tilde u_x}$/(m·s−1)z方向特征速度${\tilde u_{\textit{z}}}$/(m·s−1)
    P1P2P3P4P5P6P7P8
    01.3441.4890.5470.0300.0640.0480.5670.0210.0270.023
    0.31.3711.5110.4780.0220.0490.0240.5530.0170.0260.022
    0.61.3661.4870.3970.0660.0580.0210.5100.0150.0230.023
    下载: 导出CSV
  • [1] 黄坚, 李铸国, 唐新华. 中厚板的高功率激光焊接[J]. 航空制造技术, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001

    Huang Jian, Li Zhuguo, Tang Xinhua. High-power laser welding of plate[J]. Aeronautical Manufacturing Technology, 2010(2): 26 − 29. doi: 10.3969/j.issn.1671-833X.2010.02.001

    [2] 韩晓辉, 马寅, 马国龙, 等. 双光束激光焊匙孔动态特征分析[J]. 焊接学报, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002

    Han Xiaohui, Ma Yin, Ma Guolong, et al. Dynamic characteristic analysis of keyhole in double beam laser welding[J]. Transactions of the Chnia Welding Institutation, 2020, 41(2): 93 − 96. doi: 10.12073/j.hzxb.20190811002

    [3]

    Katayama S, Kawaguchi S, Mizutani M. Welding phenomena and in-process monitoring in high-power YAG laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 753 − 762. doi: 10.1080/09507110902836929

    [4]

    Nakamura H, Kawahito Y, Nishimoto K, et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Application, 2015, 27(3): 032012.

    [5]

    Avilov V V, Gumenyuk A, Lammers M, et al. PA position full penetration high-power laser beam welding of up to 30 mm thick AlMg3 plates using an electromagnetic weld pool support[J]. Science and Technology of Welding and Joining, 2012, 17(2): 128 − 133. doi: 10.1179/1362171811Y.0000000085

    [6]

    Kern M, Berger P, Hügel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding[J]. Welding Journal, 2000, 79(3): 72 − 78.

    [7]

    Bachmann M, Avilov V V, Gumenyuk A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309 − 321. doi: 10.1016/j.ijheatmasstransfer.2013.01.015

    [8]

    Rong Y M, Xu J J, Cao H Y, et al. Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding[J]. Journal of Manufacturing Processing, 2017, 26: 399 − 406.

    [9]

    Cao L C, Liu D H, Jiang P, et al. Multi-physics simulation of dendrite growth in magnetic field assisted solidification[J]. International Journal of Heat and Mass Transfer, 2019, 144: 11867. doi: 10.1016/j.ijheatmasstransfer.2019.118673

    [10]

    Gatzen M, Tang Z. CFD-based model for melt flow in laser beam welding of aluminium with coaxial magnetic field[J]. Physics Procedia, 2010, 5: 317 − 326.

    [11]

    Bachmann M, Avilov V V, Gumenyuk A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24 − 34. doi: 10.1016/j.ijthermalsci.2015.10.030

    [12]

    Chen J C, Wei Y H, Zhan X H, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325 − 337.

    [13]

    Chen J C, Wei Y H, Zhan X H, et al. Influence of magnetic field orientation on molten pool dynamics during magnet-assisted laser butt welding of thick aluminum alloy plates[J]. Optics and Laser Technology, 2018, 104: 148 − 158. doi: 10.1016/j.optlastec.2018.02.020

  • 期刊类型引用(1)

    1. 晏嘉陵,齐彦昌,刘明星,常子金,吴赵波,崔冰. 焊缝填充量对15Cr2Mo1耐热钢焊接修复性能的影响. 焊接. 2024(09): 56-61 . 百度学术

    其他类型引用(1)

图(5)  /  表(4)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  20
  • PDF下载量:  44
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-12-16
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-03-30

目录

/

返回文章
返回