Interface behavior of steel/Al tube assisted semi-solid brazing by magnetic pulse
-
摘要: 结合电磁成形技术和半固态钎焊技术,提出了一种钢/铝管磁脉冲辅助半固态钎焊工艺,利用电磁脉冲产生的洛伦兹力使铝外管高速碰撞半固态钎料,通过半固态钎料中固相颗粒对母材表面径向压缩和轴向剪切作用去除母材表面氧化膜,实现钢铝异种管材的无钎剂钎焊. 在不同工艺参数下进行了钢/铝管磁脉冲半固态钎焊试验,研究了钎焊接头界面元素的扩散行为和金属间化合物的生长机理. 结果表明,焊缝组织主要为α-Al以及富锌相,铝侧界面处的Al2O3氧化膜破碎与去除情况良好,钢侧界面处有薄层FeAl3金属间化合物形成,各部位均获得较好的冶金结合.Abstract: A semi-solid brazing process assisted by magnetic pulse for steel/aluminum tube was proposed by combining electromagnetic forming technology and semi-solid brazing technology. The brazing of steel and aluminum dissimilar pipes without flux soldering was realized by means of the radial compression and axial shear action of solid particles in the semi-solid solder to remove the oxide film on the surface of the base metal. The diffusion behavior of interface elements and the growth mechanism of intermetallic compounds in brazing joints were studied by magnetic pulse semi-solid brazing experiments of steel/aluminum tubes under different process parameters. The results show that the weld microstructure is mainly composed of α-Al and zinc-rich phase. The Al2O3 oxide film at the aluminum side interface is broken and removed well, and a thin layer of FeAl3 intermetallic compound is formed at the steel side interface. Good metallurgical bonding is achieved at all parts.
-
-
表 1 Zn-15Al钎料的化学成分(质量分数,%)
Table 1 Chemical compositions of Zn-15Al solder
Al Cu Fe Si Mg Pb Zn 14. 95 0. 521 0. 012 0. 031 0. 01 0. 002 余量 表 2 不同温度下铝侧特征点能谱分析成分与相组成
Table 2 Compositions and phase compositions of marked points on aluminum side at different soldering temperatures
温度T/℃ 位置 元素含量(原子分数,%) 相组成 Al Zn O 390 1 79.33 16.68 3.99 α-Al 2 73.81 22.53 3.66 α-Al 3 60.35 36.13 3.53 富锌相 4 70.56 26.66 2.78 α-Al 410 5 52.07 43.76 3.89 α-Al 6 55.12 39.18 5.7 α-Al 425 7 51.09 45.82 3.09 α-Al 8 55.58 42.34 2.09 α-Al 9 10.81 84.87 4.71 富锌相 表 3 不同温度钢侧特征点能谱分析成分与相组成
Table 3 Composition and phase composition of marked points on steel side at different soldering temperatures
温度T/℃ 位置 元素含量(原子分数,%) 相组成 Al Zn Fe O 390 1 68.97 5.08 21.7 4.25 FeAl3 2 61.18 23.52 1.47 13.21 α-Al 410 3 58.5 15.87 22.1 3.53 FeAl3 4 55.69 14.01 21.5 6.99 FeAl3 5 65.72 27.15 0.99 6.14 α-Al 425 6 63.69 10.01 19.5 5.89 FeAl3 7 61.28 14.36 16.23 7.01 FeAl3 -
[1] Tisza M, Czinege M. Comparative study of the application of steels and aluminium in lightweight production of automotive parts[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(4): 229 − 238. doi: 10.1016/j.ijlmm.2018.09.001
[2] 吴杰, 薛松柏, 费文潘, 等. 铝/钢异种材料钎焊研究现状与发展趋势[J]. 材料导报, 2019, 33(21): 3533 − 3540. doi: 10.11896/cldb.18090281 Wu Jie, Xue Songbai, Fei Wenpan, et al. Research status and development trend of aluminum/steel dissimilar material brazing[J]. Materials Guide, 2019, 33(21): 3533 − 3540. doi: 10.11896/cldb.18090281
[3] Cheepu M, Che W S. Friction welding of titanium to stainless steel using Al interlayer[J]. Transactions of the Indian Institute of Metals, 2019, 72(6): 1563 − 1568. doi: 10.1007/s12666-019-01655-7
[4] Zhang Changqing, Lü Guangming, Jin Xin, et al. Study of joining mechanism of ABS polymer and steel/aluminum by resistance spot welding[J]. China Welding, 2018, 27(2): 57 − 62.
[5] 邱哲睿, 邓永芳, 刘赣华, 等. 铝/钢异种材料搅拌摩擦焊接研究现状及发展[J]. 特种铸造及有色合金, 2020, 40(5): 512 − 518. Qiu Zherui, Deng Yongfang, Liu Ganhua, et al. Research status and development of friction stir welding of aluminum / steel dissimilar materials[J]. Special Casting and Nonferrous Alloy, 2020, 40(5): 512 − 518.
[6] Matteis A, Gullino F, Aiuto C, et al. Welding between aluminum alloy and steel sheets by using transition joints[J]. Journal of Materials Engineering and Performance, 2020, 29(8): 4840 − 4853. doi: 10.1007/s11665-020-04595-2
[7] Schubert E, Klassen M, Zerner I, et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Materials Processing Technology, 2001, 115(1): 2 − 8. doi: 10.1016/S0924-0136(01)00756-7
[8] 高远. 铜铝异种金属管磁脉冲-半固态复合辅助钎焊温度条件研究[D]. 武汉: 武汉理工大学, 2019. Gao Yuan. Study on temperature conditions of magnetic pulse-semi-solid composite assisted brazing of copper and aluminum dissimilar metal tubes[D]. Wuhan: Wuhan University of Technology, 2019.
[9] 崔佃忠, 芦笙, 崔晴晴, 等. 焊接热输入对铝/镀锌钢CMT熔-钎焊接头组织与性能的影响[J]. 焊接学报, 2014, 35(9): 82 − 86. Cui Dianzhong, Lu Sheng, Cui Qingqing, et al. Effect of heat input on microstructure and mechanical properties of CMT welding-brazing joint between 5052 aluminum alloy and galvanized Q235 steel[J]. Thansactions of the China Welding Institution, 2014, 35(9): 82 − 86.
[10] 张满, 张军, 蒋腾, 等. Fe-Al金属间化合物对铝/钢钎焊接头力学性能的影响[J]. 焊接学报, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014 Zhang Man, Zhang Jun, Jiang Teng, et al. Effect of Fe-Al intermetallic compound on mechanical property of aluminum/steel brazed joint[J]. Thansactions of the China Welding Institution, 2018, 39(1): 61 − 64. doi: 10.12073/j.hjxb.2018390014
[11] Agudo L, Eyidi D, Schmaranzer C H, et al. Intermetallic Fe xAl y-phases in a steel/Al-alloy fusion weld[J]. Journal of Materials Science, 2007, 42(12): 4205 − 4214. doi: 10.1007/s10853-006-0644-0
[12] Peyre P, Sierra G, Deschaux-Beaume F, et al. Generation of aluminium–steel joints with laser- induced reactive wetting[J]. Materials Science & Engineering A, 2007, 444(1-2): 327 − 338.
[13] 黄健康, 何翠翠, 石玗, 等. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 − 1041. Huang Jiankang, He Cuicui, Shi Yu, et al. Formation and thermodynamic analysis of Al Fe intermetallic compound at the interface of aluminum / steel dissimilar metal welded joint[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(4): 1037 − 1041.
[14] 陈云, 包晔峰, 蒋永锋. 铁铝焊接界面组织与性能的研究[J]. 材料开发与应用, 2010, 25(2): 34 − 36. doi: 10.3969/j.issn.1003-1545.2010.02.008 Chen Yun, Bao Yefeng, Jiang Yongfeng. Research on the microstructure and properties of iron-aluminum welding interface[J]. Material Development and Application, 2010, 25(2): 34 − 36. doi: 10.3969/j.issn.1003-1545.2010.02.008
-
期刊类型引用(3)
1. 陶旭阳,何建萍,徐磊. 超薄板脉冲微束等离子弧焊熔池振荡频率特征. 轻工机械. 2020(03): 24-27+32 . 百度学术
2. 陶旭阳,何建萍,徐磊. 基于LabView脉冲微束等离子弧焊熔池振荡信息提取. 智能计算机与应用. 2020(03): 371-374 . 百度学术
3. 顾玉芬,席保龙,李春凯,石玗,代悦,丁彬. 基于熔池振荡的GTAW熔透实时传感与控制. 电焊机. 2020(12): 5-8+108 . 百度学术
其他类型引用(7)