高级检索

热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响

李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛

李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛. 热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响[J]. 焊接学报, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
引用本文: 李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛. 热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响[J]. 焊接学报, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
LI Qi, LIU Fengmei, YUE Xiong, XIONG Min, YI Yaoyong, GAO Haitao. Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
Citation: LI Qi, LIU Fengmei, YUE Xiong, XIONG Min, YI Yaoyong, GAO Haitao. Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003

热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响

基金项目: 中国-乌克兰材料连接与先进制造“一带一路”联合实验室建设与联合研究(2020YFE0205300);国家国际科技合作专项 (2015DFR50310).
详细信息
    作者简介:

    李琪,硕士;主要从事先进焊接材料及焊接工艺的基础理论和应用研究;Email:liq@gwi.gd.cn.

    通讯作者:

    刘凤美,高级工程师;Email:liufm@gwi.gd.cn.

  • 中图分类号: TG 456

Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap

  • 摘要: 采用瞬间液相扩散焊技术焊接了80 μm间隙下的IC10高温合金,利用扫描电镜(SEM/EDS)、纳米压痕仪及高温拉伸试验机对热处理前后IC10接头焊缝组织形貌、弹性模量、显微硬度、高温拉伸、高温持久性能及接头断口形貌进行了测试. 结果表明,当采用SBM-3作为中间焊料,焊缝间隙尺寸为80 μm时,在1 250 ℃,5 MPa,6 h的焊接工艺条件下,焊缝组织与母材组织形貌成分相近. 经过热处理后,测得其在1 100 ℃的温度下,抗拉强度可达268 MPa,高于母材(275 MPa)的97.5%;对焊缝的高温持久性能进行了检测,测得其在温度1 100 ℃,应力为36 MPa的条件下,焊缝持久寿命大于117 h,高于母材的90%. 在接头结构中,较大体积浓度的γ + γ′相存在于焊缝中,接头结构由母材平稳过渡到焊接接头. 高温拉伸及高温持久试验中裂纹从硼化物和碳化物的边缘以及γ + γ′共晶边缘处的微孔扩展. 热处理提高了母材弹性模量的同时降低了焊缝的弹性模量,接头弹性模量的降低提高了TLP扩散焊接头的高温力学强度.
    Abstract: The IC10 superalloy with 80 μm gap was welded by TLP diffusion welding. The microstructure, morphology, modulus of elasticity, microhardness, high temperature tensile strength, high temperature durability and fracture morphology before and after heat treatment of IC10 joints were tested by using scanning electron microscopy (SEM/EDS), nano-indenter and high-temperature tensile testing machine. The results showed that when SBM-3 was used as the intermediate solder and the gap size of the weld was 80 μm, under the welding process conditions of 1 250 ℃, 5 MPa, and 6 h, the morphology and base composition of the weld seam and the base metal were similar. After heat treatment, the tensile strength was 268 MPa, which higher than 97.5% of base metal (275 MPa) at the test temperature of 1 100 ℃. The high temperature durability of the IC10 joints were tested, the creep time of the joints was more than 117 h under the condition of the temperature of 1 100 ℃ and the stress of 36 MPa, which was higher than 90% of the base material. In the joint structure, a larger volume of γ + γ′ phase existed in the weld, and the joint structure transitioned smoothly from the base material to the welded joints. In high-temperature tensile and high-temperature durability tests, cracks started to expand from at the edge of the borides and carbides as well as the edge of the γ + γ′ eutectic. Heat treatment increased the elastic modulus of the base material while reduced the elastic modulus of the weld. The reduction of the joint elastic modulus improves the high-temperature mechanical strength of the TLP diffusion welded joints.
  • 铝及其合金具有密度小、比强度高、耐腐性能好等一系列优点,其中5A03铝合金被广泛应用于飞机和汽车零部件的制造[1-3]. 目前最常用的焊接方法为TIG焊[4-5](非熔化极惰性气体保护焊). 对于铝合金,传统TIG焊接方法所获得的焊缝强度低、气孔多、熔深浅、焊缝区晶粒粗大且耐蚀性较差[6-9].因此寻找一种新的焊接方法以提高焊缝性能具有重大的意义. 通常改善以上焊接接头缺陷的方法有改变焊接电流、焊接速度和送气频率[10-12],相比较其它改善方法,改变送气频率最为简便易行[13-15].

    针对5A03铝合金采用自制的变动送气装置进行送气,利用计算机精确控制变动送气装置中的电磁阀,通过两个送气通路在不同频率Ar-Ar交替送气下进行TIG焊接. 前期研究结果表明焊枪处气体流量的改变必然会导致由电弧推力引起高温气流运动,将会以脉冲压力的形式直接作用到熔池表面,对焊缝成形产生影响[16]. 焊缝表面呈现典型鱼鳞纹分布形式,鱼鳞纹分布间隔和交替送气频率相对应. 文中将进一步研究变化送气条件下焊缝的性能与传统TIG焊焊缝性能的差异.

    试验板材为5A03铝合金,合金力学性能及焊接参数见表1.

    表  1  5A03铝合金力学性能
    Table  1.  Mechanical properties of 5A03 aluminum alloy

    抗拉强度
    Rm/MPa
    条件屈服强度
    ReL/MPa
    断后伸长率
    A(%)
    ≥ 220 ≥ 80 ≥ 15
    下载: 导出CSV 
    | 显示表格

    选用MasterTig MLS 3003ACDC型焊机,并配以焊接移动平台,分别对板材进行1 Hz及传统送气TIG对焊焊接. 焊接原理图如图1所示.

    图  1  焊接原理图
    Figure  1.  Diagram of welding principle

    为保证焊接接头质量,焊接保护气体采用高纯度99.99%的氩气,且保证保护气体充足,防止保护气不足而影响试验结果. 焊接参数见表2.

    在对焊缝组织进行阳极覆膜处理后,利用GX-71型偏振光电子显微镜和扫描电镜对焊缝进行显微组织观察和EBSD分析;利用线切割机将所获得的焊缝切割出厚度为2.5 mm的标准拉伸试样,拉伸试样标距10为40 mm,宽度b为10 mm, 总长度为90 mm. 通过电子万能试验机测出焊缝区力-位移拉伸曲线,试验时拉伸速率2 mm/min. 使用场发射扫描电镜对微观断口形貌进行分析;模拟海洋环境,利用CS350电化学工作站,对焊缝进行耐腐蚀性分析,试验时工作电极(腐蚀试样)的暴露面积为4 mm2,辅助电极为铂片电极,参比电极为甘汞电极,扫描区间为−0.3 V~0.3 V,扫描速率为0.66 mV/s.

    表  2  焊接工艺参数
    Table  2.  Welding parameters
    序号频率f/Hz电流类型焊接电流I/A保护气交替类型焊接速度v/(cm·min−1)
    1AC90ArAr21
    21AC90ArAr- Ar21
    下载: 导出CSV 
    | 显示表格

    通过偏振光电子显微镜获得传统送气焊缝和1 Hz下变动送气焊缝偏光形貌如图2所示.

    图  2  不同焊接方法焊缝组织形貌
    Figure  2.  Weld organization chart of different welding methods. (a) traditional welding; (b) 1 Hz welding

    通过扫描电镜获得焊缝区SEM图像和EBSD图像如图3图4所示.

    图  3  不同焊接方法焊缝SEM图像
    Figure  3.  SEM images of different welding method. (a) traditional welding; (b) 1 Hz welding
    图  4  不同焊接方法的焊缝区EBSD图像
    Figure  4.  EBSD images of different welding methods. (a) traditional welding; (b) 1 Hz welding

    图2图3图4中可以看出,随着送气频率的改变,焊缝区晶粒大小和均匀程度发生明显变化. 与传统送气TIG焊所获得的焊缝相比,1 Hz变动送气焊接方法所获得的焊缝晶粒尺寸明显减小,分布更加均匀. 在Al-Mg合金中,β相(Al8Mg5)是影响材料力学性能和耐蚀性的重要因素. Al8Mg5在板材中呈鱼骨状分布,但是在焊缝区呈质点状弥散分布,β相的存在状态发生变化,这说明在焊接过程中,变动送气对熔池金属产生冲击和搅动的作用,使熔池内形核质点增多,晶粒发生细化;与此同时鱼骨状的Al8Mg5在冲击下发生破碎,以质点状弥散分布于焊缝中.

    分别对两组焊缝拉伸试样的抗拉强度取平均值,数据如表3所示.

    表  3  拉伸试验参数
    Table  3.  Tensile experiment parameters.
    送气频率抗拉强度Rm/MPa屈服强度ReL/MPa断后伸长率A(%)
    190.51099.3
    1 Hz20910311.4
    下载: 导出CSV 
    | 显示表格

    由拉伸试验结果可以得出,5A03铝合金在传统送气条件下的抗拉强度为190.5 MPa,约为母材的86.4%;1 Hz变动送气TIG焊条件下,焊缝的抗拉强度为209 MPz,约为母材的95%,均满足使用要求. 传统送气焊缝和1 Hz变动送气焊缝的拉伸曲线如图5所示.

    图  5  不同焊接方法焊缝拉伸曲线
    Figure  5.  Tensile curves of welds in different welding methods

    从拉伸曲线中可以看出,两个试件均在经历短暂的屈服后直接进入了塑性变形阶段,传统焊试样在力达到1.908 kN时,达到屈服点,试样开始发生塑性变形,5.092 kN时传统焊焊缝试样断裂,1 Hz试样在力达到1.462 kN时发生塑性变形,力达到5.616 kN时1 Hz焊缝试样断裂. 1 Hz焊缝抗拉强度略高于传统焊焊缝. 传统焊焊缝的屈强比为0.37,1 Hz焊缝的屈强比为0.26,故变动送气焊缝的塑性略好.

    两种送气频率焊缝的宏观断口形貌如图6所示,从图中可以看出两种断口的表面粗糙不平,颜色灰暗无金属光泽,断面与拉伸轴线约成60°角,初步判断为韧窝断裂.

    图  6  宏观断口照片
    Figure  6.  Macro fracture photo

    两种焊缝的微观断口形貌和EDS能谱如图7所示. 拉伸过程中,在拉应力的作用下,晶界、第二相质点以及焊缝缺陷处的位错会发生塞积现象,产生位错塞积群. 随着拉应力的增大,位错塞积群处会发生微孔的形核长大,最终形成微裂纹引发断裂. 从图7中可以看出两种焊缝断口表面呈纤维状,整体灰暗,且存在大量凹坑,韧窝形状呈椭圆形,两种焊缝断口形貌主要为剪切韧窝,白色条带为剪切脊,材料的断裂机理为微孔聚集型塑性断裂,材料具有较好的力学性能. 传统焊焊缝断口的韧窝数量略少于1 Hz焊缝,因此抗拉强度较低. 在断口韧窝处发现β相质点,对其进行EDS分析发现成分为Al8Mg5. 结合偏振光显微照片和EBSD图像可以发现:在1 Hz变动送气条件下,Al8Mg5均匀分布在晶粒中,不沿晶界分布,避免焊缝区晶界处产生应力集中,故提高了焊缝的抗拉强度.

    图  7  两种焊缝微观断口照片及EDS能谱
    Figure  7.  Photographs of micro-fractures and EDS spectra of two types of welds. (a) micro-fracture morphology of traditional weld; (b) energy spectrum of β phase in traditional weld fracture; (c) microscopic fracture morphology of 1 Hz weld; (d) β-phase energy spectrum of 1 Hz weld fracture

    分别将两种焊接方法所获得的的焊缝浸泡在浓度为3.5%的NaCl溶液中进行模拟海水腐蚀试验,经电化学工作站测得塔菲尔曲线与尼奎斯特曲线(Nyquist)如图8所示.

    图  8  塔菲尔曲线与尼奎斯特曲线
    Figure  8.  Tafel curve & Nyquist curve. (a) Tafel curve; (b) Nyquist curve

    图8a为两种焊缝在NaCl溶液中腐蚀的塔菲尔曲线,曲线中自腐蚀电位决定腐蚀倾向:自腐蚀电位越高耐蚀性越强;自腐蚀电流度决定腐蚀速率:自腐蚀电流密度越小耐蚀性越强. 从塔菲尔曲线中可以看出:传统送气焊缝的自腐蚀电位为−0.98 V,1 Hz变动送气焊缝的自腐蚀电位为−1.02 V,传统送气焊缝的耐蚀性较好.

    从极化曲线中可以看到,1 Hz变动送气焊缝的自腐蚀电流密度大于传统送气焊缝的电流密度,自两种焊缝的自腐蚀电位正移,两种焊缝的电流密度上升速度均变缓,说明此时腐蚀表面形成一层钝化膜,在电位为−0.738 V时,1 Hz变动送气焊缝的电流密度开始陡升,说明此时发生点蚀现象. 传统送气焊缝在电位为−0.69 V时陡升,说明此时发生点蚀现象. 说明传统送气焊缝具有更好的耐腐蚀性. 结合偏光照片可以发现:1 Hz变动送气焊缝中β相的数量多于传统焊缝,所以在电化学腐蚀过程中会形成更多的微小的原电池,提高了电流密度,使腐蚀速率加快,故传统送气焊缝的耐腐蚀性略好.

    图8b为两种焊缝在3.5%NaCl溶液中腐蚀的Nyquist曲线,阻抗的大小由曲线直径的大小决定. 从Nyquist曲线可以看出,两条曲线在高频区只有1个容抗弧,表明只有1个时间常数,是由于电荷转移电阻和双电层电容并联而成,说明腐蚀的进程由活化极化控制,腐蚀反应不存在浓差极化[17]. 传统送气焊缝的阻抗弧明显大于1 Hz变动送气焊缝的阻抗弧,说明传统送气的焊缝生成更厚的氧化膜,耐蚀性更好.

    (1)通过对比两种焊缝的偏振光照片和EBSD图像得出,1 Hz变动送气焊缝比传统焊缝晶粒更为细小,且焊缝中弥散分布的β相质点(Al8Mg5)更多,使得焊缝的抗拉强度有所提高.

    (2)对比两种焊缝的抗拉强度得出,1 Hz变动送气焊缝的抗拉强度更高且传统焊缝的屈强比小于1 Hz焊缝. 两种焊缝的抗拉强度均满足使用要求且传统焊缝的塑性较好.

    (3)通过对拉伸断口的SEM照片和断口处β相EDS能谱进行分析发现:两种焊缝断口均为微孔聚集性塑性断裂;韧窝处发现的β相为Al8Mg5,裂纹形成于β相质点.

    (4)通过对两种焊缝进行电化学试验得出,传统送气条件下获得的焊缝耐蚀性较强.

  • 图  1   IC10高温合金的显微组织

    Figure  1.   Microstructure of IC10 superalloy

    图  2   接头微观组织形貌

    Figure  2.   Microstructure of the TLP-bonded joints. (a) before heat treatment; (b) after heat treatment

    图  3   热处理前后接头 1 100 ℃高温抗拉强度

    Figure  3.   1 100 ℃ high temperature tensile strength of joints before and after heat treatment

    图  4   热处理前后接头 1 100 ℃/36 MPa的持久寿命

    Figure  4.   Creep rupture life of joints at 1 100 ℃/36 MPa before and after heat treatment

    图  5   热处理前1 100 ℃高温拉伸断口纵剖面

    Figure  5.   High temperature tensile fracture profile of 1 100 ℃ before heat treatment

    图  6   热处理前接头拉伸断口形貌

    Figure  6.   Tensile fracture of joint before heat treatment. (a) macro morphology; (b) marked area in Fig. 6a; (c) enlarged area in Ⅰ; (d) enlarged area in Ⅱ

    图  7   热处理后接头1 100 ℃高温拉伸断口纵剖面

    Figure  7.   1 100 ℃ high temperature tensile fracture profile joints after heat treatment

    图  8   热处理后接头高温拉伸断口

    Figure  8.   High temperature tensile fracture of joints after heat treatment (BSE). (a) macro morphology; (b) expend map of marked area

    图  9   热处理前高温持久试验后接头形貌

    Figure  9.   Joint morphology after high temperature endurance test before heat treatment

    图  10   热处理前高温持久接头组织(SEM)

    Figure  10.   Microstructure of high temperature durable joint before heat treatment (SEM). (a) feature topography area; (b) carbide agglomeration phase (low power); (c) carbide agglomeration phase (high power); (d) structure morphology under high magnification

    图  11   热处理后的接头高温持久断口形貌

    Figure  11.   High-temperature permanent fracture morphology of joints after heat treatment. (a) longitudinal section of joint high temperature durable fracture; (b) feature morphology Ⅰ; (c) feature morphology Ⅱ

    图  12   纳米压痕试验

    Figure  12.   Nanoindentation test. (a) SEM image of typical region of TLP diffusion welded joint; (b) schematic diagram of position of nanoindentation array

    图  13   热处理前后纳米压痕测试结果

    Figure  13.   Results of nanoindentation test before and after heat treatment. (a) elastic modulus; (b) hardness

    表  1   IC10合金的化学成分(质量分数,%)

    Table  1   Chemical composition of IC10 alloys

    W Al Cr Co Hf Ta C B Ni
    4.8~5.2 5.6~6.2 6.5~7.5 11.5~12.5 1.3~1.7 6.5~7.5 ≤ 0.012 ≤ 0.02 余量
    下载: 导出CSV

    表  2   SBM-3粉末合金化学成分(质量分数,%)

    Table  2   Chemical composition of SBM-3 powder alloy

    C Cr Co Mo W Al Ti Nb Ta Re B Ni
    0.03~0.1 12.1~12.8 6.8~7.3 0.8~1.2 4.1~4.8 2.8~3.5 4.5~5.0 0.1~0.4 3.2~3.8 2.5~2.7 1.1~1.3 余量
    下载: 导出CSV

    表  3   母材及80 μm间隙接头热处理前后1 100 ℃/36 MPa持久寿命(h)

    Table  3   1 100 ℃/36 MPa creep rupture life for base metal and 80 μm gap joint before and after heat treatment

    材料 热处理前 热处理后
    IC10母材 117 (未断裂) 102 (未断裂)
    SBM-3中间层 117 (未断裂) 102 (在试验中出现裂纹)
    下载: 导出CSV

    表  4   图6中标注相的化学成分(质量分数,%)

    Table  4   Chemical composition of the phase in Fig. 6

    位置 C Al Ti Cr Co Ni Mo W Hf Ta 可能相
    A 3.87 2.63 1.97 24.9 7.06 19.05 15.52 24.98 富W,Mo,Cr硼化物
    B 5.98 1.02 11.7 1.86 2.07 8.33 9.97 59.07 富Hf,Ta,Ti碳化物
    C 5.53 2.99 0.99 1.46 2.13 8.01 78.81 富Hf碳化物
    D 4.68 3.89 2.34 9.60 10.5 68.95 γ′
    下载: 导出CSV

    表  5   图8中标注相的化学成分(质量分数,%)

    Table  5   Chemical composition of the annotated phase in Fig. 8

    位置 C Al Ti Cr Co Ni Mo W Hf Ta 可能相
    A 1.53 6.28 2.69 3.17 11.15 23.64 51.54 富Hf,Ta,Ti碳化物
    B 2.68 7.32 1.15 9.35 8.52 55.20 9.84 5.94 γ′
    C 1.39 7.34 2.48 2.63 16.73 16.20 53.23 富Hf,Ta,Ti碳化物
    下载: 导出CSV
  • [1]

    Bo L, Lu C, Jinbao H, et al. Microstructure-properties relationship of transient liquid phase diffusion bonded a third generation single crystal superalloy joint[J]. China Welding, 2017, 26(1): 58 − 63.

    [2] 柴禄, 侯金保, 张胜. 工艺参数对IC10单晶TLP接头组织和性能的影响[J]. 焊接学报, 2018, 39(8): 114 − 118. doi: 10.12073/j.hjxb.2018390212

    Chai Lu, Hou Jinbao, Zhang Sheng. Process parameters on microstructure and properties of IC10 single crystal TLP joints[J]. Transactions of the China Welding Institution, 2018, 39(8): 114 − 118. doi: 10.12073/j.hjxb.2018390212

    [3]

    Jinbao H, Youhui W, Lei Z. Transient liquid phase(TLP)diffusion donding of NiAl alloy[J]. Journal of Aeronautical Materials, 2006, 26(3): 329 − 330.

    [4] 郎波, 侯金保, 滕俊飞, 等. 新型航空材料及其结构的扩散焊[J]. 航空制造技术, 2014, 464(20): 74 − 75. doi: 10.3969/j.issn.1671-833X.2014.20.012

    Lang Bo, Hou Jinbao, Teng Junfei, et al. Diffusion welding of new aviation materials and structure[J]. Aviation Manufacturing Technology, 2014, 464(20): 74 − 75. doi: 10.3969/j.issn.1671-833X.2014.20.012

    [5]

    Ye L, Li X, Mao W, et al. Brazing of IC10 superalloy with Ni-based brazing fillers using Hf and Zr as melting-point depressants[J]. Transactions of the China Welding Institution, 2009, 30(2): 137 − 140.

    [6]

    Li Q, Liu F, Yue X, et al. Effect of interlayer material on microstructure and mechanical properties of diffusion brazd IC10 superalloy[J]. IOP Conference Series: Materials Science and Engineering, 2019, 612(3): 032076.

    [7]

    Idowu O A, Richards N L, Chaturvedi M C. Effect of bonding temperature on isothermal solidification rate during transient liquid phase bonding of Inconel 738LC superalloy[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2005, 397(1-2): 98 − 112.

    [8] 潘林. 不同中间层材料TLP焊FGH97合金及接头凝固行为分析[D]. 南昌: 南昌航空大学, 2012.

    Pan Lin. Analysis of solidification behavior of FGH97 alloy and joints welded by TLP with different interlayer materials[D]. Nanchang: Nanchang University of Aeronautics, 2012.

    [9] 韩汾汾, 郭广思, 李辉, 等. 改型K417L镍基高温合金的热疲劳行为[J]. 沈阳理工大学学报, 2008, 27(2): 64 − 68. doi: 10.3969/j.issn.1003-1251.2008.02.016

    Han Fenfen, Guo Guangsi, Li Hui, et al. Thermal fatigue behavior of modified K417L Ni-based superalloy[J]. Journal of Shenyang University of Technology, 2008, 27(2): 64 − 68. doi: 10.3969/j.issn.1003-1251.2008.02.016

    [10] 刘纪德. TLP连接对一种镍基单晶高温合金组织和性能的影响[D]. 沈阳: 中国科学院金属研究所, 2007.

    Liu Jide. Effect of TLP bonding on microstructure and properties of a Ni-based single crystal superalloy[D]. Shenyang: Institute of Metals, Chinese Academy of Sciences, 2007.

    [11] 张炫, 金涛, 赵乃仁, 等. 一种镍基单晶合金拉伸流变行为及断裂机制的研究[C]//2004年材料科学与工程新进展, 北京: 冶金出版社, 2004: 745−749.

    Zhang Xuan, Jin Tao, Zhao Nairen, et al. Study on tensile rheological behavior and fracture mechanism of a Ni-based single crystal alloy[C]//2004 Collection of New Developments in material Science and Engineering, Beijing: Metallurgical Industry Press, 2004: 745−749.

    [12]

    Zhang L X, Chang Q, Sun Z, et al. Effects of boron and silicon on microstructural evolution and mechanical properties of transient liquid phase bonded GH3039/ IC10 joints[J]. Journal of Manufacturing Processes, 2019, 38: 167 − 173. doi: 10.1016/j.jmapro.2019.01.016

    [13]

    Kamaraj M, Serin K, Kolbe M, et al. Influence of stress state on the kinetics of gamma-channel widening during high temperature and low stress creep of the single crystal superalloy CMSX[J]. Materials Science & Engineering A, 2001, 319: 796 − 799.

    [14]

    Kim D, Sah I, Jang C. Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys[J]. Materials Science and Engineering: A, 2011, 528(3): 1713 − 1720. doi: 10.1016/j.msea.2010.10.104

    [15] 都贝宁, 盛立远, 赖琛, 等. 一种镍基高温合金蠕变过程中碳、硼化物的演变行为及结构表征[J]. 稀有金属材料与工程, 2017, 46(8): 87 − 93.

    Du Beining, Sheng Liyuan, Lai Chen, et al. Evolution behavior and structure characterization of carbon and borides during creep of a nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(8): 87 − 93.

    [16] 史振学, 刘世忠, 赵金乾. C含量对一种单晶高温合金组织和持久性能的影响[J]. 有色金属材料与工程, 2018, 39(5): 5 − 10.

    Shi Zhenxue, Liu Shizhong, Zhao Jinqian. Effect of C content on microstructure and durability of a single crystal superalloy[J]. Non-ferrous Metals Materials and Engineering, 2018, 39(5): 5 − 10.

    [17]

    Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy[J]. Materials Science and Engineering: A, 2013, 582: 368 − 373. doi: 10.1016/j.msea.2013.06.021

    [18]

    Qin H, Kuang T, Li Q, et al. Stress concentration induced by the crystal orientation in the transient-liquid-phase bonded Joint of single-crystalline Ni3Al[J]. Materials, 2019, 12(17): 2765. doi: 10.3390/ma12172765

  • 期刊类型引用(1)

    1. 张高,刘梅军,韩嘉琪,刘宏,杨冠军. 压气机整体叶盘修复再制造的研究进展. 航空材料学报. 2024(03): 65-81 . 百度学术

    其他类型引用(1)

图(13)  /  表(5)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  94
  • PDF下载量:  32
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-12-08
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2021-04-30

目录

/

返回文章
返回