高级检索

热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响

李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛

李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛. 热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响[J]. 焊接学报, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
引用本文: 李琪, 刘凤美, 乐雄, 熊敏, 易耀勇, 高海涛. 热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响[J]. 焊接学报, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
LI Qi, LIU Fengmei, YUE Xiong, XIONG Min, YI Yaoyong, GAO Haitao. Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003
Citation: LI Qi, LIU Fengmei, YUE Xiong, XIONG Min, YI Yaoyong, GAO Haitao. Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 36-44. DOI: 10.12073/j.hjxb.20201209003

热处理对80 μm间隙下IC10高温合金TLP扩散焊组织及高温性能的影响

基金项目: 中国-乌克兰材料连接与先进制造“一带一路”联合实验室建设与联合研究(2020YFE0205300);国家国际科技合作专项 (2015DFR50310).
详细信息
    作者简介:

    李琪,硕士;主要从事先进焊接材料及焊接工艺的基础理论和应用研究;Email:liq@gwi.gd.cn.

    通讯作者:

    刘凤美,高级工程师;Email:liufm@gwi.gd.cn.

  • 中图分类号: TG 456

Effect of heat treatment on microstructure and high temperature properties of IC10 superalloy TLP diffusion welding under 80 μm gap

  • 摘要: 采用瞬间液相扩散焊技术焊接了80 μm间隙下的IC10高温合金,利用扫描电镜(SEM/EDS)、纳米压痕仪及高温拉伸试验机对热处理前后IC10接头焊缝组织形貌、弹性模量、显微硬度、高温拉伸、高温持久性能及接头断口形貌进行了测试. 结果表明,当采用SBM-3作为中间焊料,焊缝间隙尺寸为80 μm时,在1 250 ℃,5 MPa,6 h的焊接工艺条件下,焊缝组织与母材组织形貌成分相近. 经过热处理后,测得其在1 100 ℃的温度下,抗拉强度可达268 MPa,高于母材(275 MPa)的97.5%;对焊缝的高温持久性能进行了检测,测得其在温度1 100 ℃,应力为36 MPa的条件下,焊缝持久寿命大于117 h,高于母材的90%. 在接头结构中,较大体积浓度的γ + γ′相存在于焊缝中,接头结构由母材平稳过渡到焊接接头. 高温拉伸及高温持久试验中裂纹从硼化物和碳化物的边缘以及γ + γ′共晶边缘处的微孔扩展. 热处理提高了母材弹性模量的同时降低了焊缝的弹性模量,接头弹性模量的降低提高了TLP扩散焊接头的高温力学强度.
    Abstract: The IC10 superalloy with 80 μm gap was welded by TLP diffusion welding. The microstructure, morphology, modulus of elasticity, microhardness, high temperature tensile strength, high temperature durability and fracture morphology before and after heat treatment of IC10 joints were tested by using scanning electron microscopy (SEM/EDS), nano-indenter and high-temperature tensile testing machine. The results showed that when SBM-3 was used as the intermediate solder and the gap size of the weld was 80 μm, under the welding process conditions of 1 250 ℃, 5 MPa, and 6 h, the morphology and base composition of the weld seam and the base metal were similar. After heat treatment, the tensile strength was 268 MPa, which higher than 97.5% of base metal (275 MPa) at the test temperature of 1 100 ℃. The high temperature durability of the IC10 joints were tested, the creep time of the joints was more than 117 h under the condition of the temperature of 1 100 ℃ and the stress of 36 MPa, which was higher than 90% of the base material. In the joint structure, a larger volume of γ + γ′ phase existed in the weld, and the joint structure transitioned smoothly from the base material to the welded joints. In high-temperature tensile and high-temperature durability tests, cracks started to expand from at the edge of the borides and carbides as well as the edge of the γ + γ′ eutectic. Heat treatment increased the elastic modulus of the base material while reduced the elastic modulus of the weld. The reduction of the joint elastic modulus improves the high-temperature mechanical strength of the TLP diffusion welded joints.
  • 图  1   IC10高温合金的显微组织

    Figure  1.   Microstructure of IC10 superalloy

    图  2   接头微观组织形貌

    Figure  2.   Microstructure of the TLP-bonded joints. (a) before heat treatment; (b) after heat treatment

    图  3   热处理前后接头 1 100 ℃高温抗拉强度

    Figure  3.   1 100 ℃ high temperature tensile strength of joints before and after heat treatment

    图  4   热处理前后接头 1 100 ℃/36 MPa的持久寿命

    Figure  4.   Creep rupture life of joints at 1 100 ℃/36 MPa before and after heat treatment

    图  5   热处理前1 100 ℃高温拉伸断口纵剖面

    Figure  5.   High temperature tensile fracture profile of 1 100 ℃ before heat treatment

    图  6   热处理前接头拉伸断口形貌

    Figure  6.   Tensile fracture of joint before heat treatment. (a) macro morphology; (b) marked area in Fig. 6a; (c) enlarged area in Ⅰ; (d) enlarged area in Ⅱ

    图  7   热处理后接头1 100 ℃高温拉伸断口纵剖面

    Figure  7.   1 100 ℃ high temperature tensile fracture profile joints after heat treatment

    图  8   热处理后接头高温拉伸断口

    Figure  8.   High temperature tensile fracture of joints after heat treatment (BSE). (a) macro morphology; (b) expend map of marked area

    图  9   热处理前高温持久试验后接头形貌

    Figure  9.   Joint morphology after high temperature endurance test before heat treatment

    图  10   热处理前高温持久接头组织(SEM)

    Figure  10.   Microstructure of high temperature durable joint before heat treatment (SEM). (a) feature topography area; (b) carbide agglomeration phase (low power); (c) carbide agglomeration phase (high power); (d) structure morphology under high magnification

    图  11   热处理后的接头高温持久断口形貌

    Figure  11.   High-temperature permanent fracture morphology of joints after heat treatment. (a) longitudinal section of joint high temperature durable fracture; (b) feature morphology Ⅰ; (c) feature morphology Ⅱ

    图  12   纳米压痕试验

    Figure  12.   Nanoindentation test. (a) SEM image of typical region of TLP diffusion welded joint; (b) schematic diagram of position of nanoindentation array

    图  13   热处理前后纳米压痕测试结果

    Figure  13.   Results of nanoindentation test before and after heat treatment. (a) elastic modulus; (b) hardness

    表  1   IC10合金的化学成分(质量分数,%)

    Table  1   Chemical composition of IC10 alloys

    W Al Cr Co Hf Ta C B Ni
    4.8~5.2 5.6~6.2 6.5~7.5 11.5~12.5 1.3~1.7 6.5~7.5 ≤ 0.012 ≤ 0.02 余量
    下载: 导出CSV

    表  2   SBM-3粉末合金化学成分(质量分数,%)

    Table  2   Chemical composition of SBM-3 powder alloy

    C Cr Co Mo W Al Ti Nb Ta Re B Ni
    0.03~0.1 12.1~12.8 6.8~7.3 0.8~1.2 4.1~4.8 2.8~3.5 4.5~5.0 0.1~0.4 3.2~3.8 2.5~2.7 1.1~1.3 余量
    下载: 导出CSV

    表  3   母材及80 μm间隙接头热处理前后1 100 ℃/36 MPa持久寿命(h)

    Table  3   1 100 ℃/36 MPa creep rupture life for base metal and 80 μm gap joint before and after heat treatment

    材料 热处理前 热处理后
    IC10母材 117 (未断裂) 102 (未断裂)
    SBM-3中间层 117 (未断裂) 102 (在试验中出现裂纹)
    下载: 导出CSV

    表  4   图6中标注相的化学成分(质量分数,%)

    Table  4   Chemical composition of the phase in Fig. 6

    位置 C Al Ti Cr Co Ni Mo W Hf Ta 可能相
    A 3.87 2.63 1.97 24.9 7.06 19.05 15.52 24.98 富W,Mo,Cr硼化物
    B 5.98 1.02 11.7 1.86 2.07 8.33 9.97 59.07 富Hf,Ta,Ti碳化物
    C 5.53 2.99 0.99 1.46 2.13 8.01 78.81 富Hf碳化物
    D 4.68 3.89 2.34 9.60 10.5 68.95 γ′
    下载: 导出CSV

    表  5   图8中标注相的化学成分(质量分数,%)

    Table  5   Chemical composition of the annotated phase in Fig. 8

    位置 C Al Ti Cr Co Ni Mo W Hf Ta 可能相
    A 1.53 6.28 2.69 3.17 11.15 23.64 51.54 富Hf,Ta,Ti碳化物
    B 2.68 7.32 1.15 9.35 8.52 55.20 9.84 5.94 γ′
    C 1.39 7.34 2.48 2.63 16.73 16.20 53.23 富Hf,Ta,Ti碳化物
    下载: 导出CSV
  • [1]

    Bo L, Lu C, Jinbao H, et al. Microstructure-properties relationship of transient liquid phase diffusion bonded a third generation single crystal superalloy joint[J]. China Welding, 2017, 26(1): 58 − 63.

    [2] 柴禄, 侯金保, 张胜. 工艺参数对IC10单晶TLP接头组织和性能的影响[J]. 焊接学报, 2018, 39(8): 114 − 118. doi: 10.12073/j.hjxb.2018390212

    Chai Lu, Hou Jinbao, Zhang Sheng. Process parameters on microstructure and properties of IC10 single crystal TLP joints[J]. Transactions of the China Welding Institution, 2018, 39(8): 114 − 118. doi: 10.12073/j.hjxb.2018390212

    [3]

    Jinbao H, Youhui W, Lei Z. Transient liquid phase(TLP)diffusion donding of NiAl alloy[J]. Journal of Aeronautical Materials, 2006, 26(3): 329 − 330.

    [4] 郎波, 侯金保, 滕俊飞, 等. 新型航空材料及其结构的扩散焊[J]. 航空制造技术, 2014, 464(20): 74 − 75. doi: 10.3969/j.issn.1671-833X.2014.20.012

    Lang Bo, Hou Jinbao, Teng Junfei, et al. Diffusion welding of new aviation materials and structure[J]. Aviation Manufacturing Technology, 2014, 464(20): 74 − 75. doi: 10.3969/j.issn.1671-833X.2014.20.012

    [5]

    Ye L, Li X, Mao W, et al. Brazing of IC10 superalloy with Ni-based brazing fillers using Hf and Zr as melting-point depressants[J]. Transactions of the China Welding Institution, 2009, 30(2): 137 − 140.

    [6]

    Li Q, Liu F, Yue X, et al. Effect of interlayer material on microstructure and mechanical properties of diffusion brazd IC10 superalloy[J]. IOP Conference Series: Materials Science and Engineering, 2019, 612(3): 032076.

    [7]

    Idowu O A, Richards N L, Chaturvedi M C. Effect of bonding temperature on isothermal solidification rate during transient liquid phase bonding of Inconel 738LC superalloy[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2005, 397(1-2): 98 − 112.

    [8] 潘林. 不同中间层材料TLP焊FGH97合金及接头凝固行为分析[D]. 南昌: 南昌航空大学, 2012.

    Pan Lin. Analysis of solidification behavior of FGH97 alloy and joints welded by TLP with different interlayer materials[D]. Nanchang: Nanchang University of Aeronautics, 2012.

    [9] 韩汾汾, 郭广思, 李辉, 等. 改型K417L镍基高温合金的热疲劳行为[J]. 沈阳理工大学学报, 2008, 27(2): 64 − 68. doi: 10.3969/j.issn.1003-1251.2008.02.016

    Han Fenfen, Guo Guangsi, Li Hui, et al. Thermal fatigue behavior of modified K417L Ni-based superalloy[J]. Journal of Shenyang University of Technology, 2008, 27(2): 64 − 68. doi: 10.3969/j.issn.1003-1251.2008.02.016

    [10] 刘纪德. TLP连接对一种镍基单晶高温合金组织和性能的影响[D]. 沈阳: 中国科学院金属研究所, 2007.

    Liu Jide. Effect of TLP bonding on microstructure and properties of a Ni-based single crystal superalloy[D]. Shenyang: Institute of Metals, Chinese Academy of Sciences, 2007.

    [11] 张炫, 金涛, 赵乃仁, 等. 一种镍基单晶合金拉伸流变行为及断裂机制的研究[C]//2004年材料科学与工程新进展, 北京: 冶金出版社, 2004: 745−749.

    Zhang Xuan, Jin Tao, Zhao Nairen, et al. Study on tensile rheological behavior and fracture mechanism of a Ni-based single crystal alloy[C]//2004 Collection of New Developments in material Science and Engineering, Beijing: Metallurgical Industry Press, 2004: 745−749.

    [12]

    Zhang L X, Chang Q, Sun Z, et al. Effects of boron and silicon on microstructural evolution and mechanical properties of transient liquid phase bonded GH3039/ IC10 joints[J]. Journal of Manufacturing Processes, 2019, 38: 167 − 173. doi: 10.1016/j.jmapro.2019.01.016

    [13]

    Kamaraj M, Serin K, Kolbe M, et al. Influence of stress state on the kinetics of gamma-channel widening during high temperature and low stress creep of the single crystal superalloy CMSX[J]. Materials Science & Engineering A, 2001, 319: 796 − 799.

    [14]

    Kim D, Sah I, Jang C. Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys[J]. Materials Science and Engineering: A, 2011, 528(3): 1713 − 1720. doi: 10.1016/j.msea.2010.10.104

    [15] 都贝宁, 盛立远, 赖琛, 等. 一种镍基高温合金蠕变过程中碳、硼化物的演变行为及结构表征[J]. 稀有金属材料与工程, 2017, 46(8): 87 − 93.

    Du Beining, Sheng Liyuan, Lai Chen, et al. Evolution behavior and structure characterization of carbon and borides during creep of a nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(8): 87 − 93.

    [16] 史振学, 刘世忠, 赵金乾. C含量对一种单晶高温合金组织和持久性能的影响[J]. 有色金属材料与工程, 2018, 39(5): 5 − 10.

    Shi Zhenxue, Liu Shizhong, Zhao Jinqian. Effect of C content on microstructure and durability of a single crystal superalloy[J]. Non-ferrous Metals Materials and Engineering, 2018, 39(5): 5 − 10.

    [17]

    Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy[J]. Materials Science and Engineering: A, 2013, 582: 368 − 373. doi: 10.1016/j.msea.2013.06.021

    [18]

    Qin H, Kuang T, Li Q, et al. Stress concentration induced by the crystal orientation in the transient-liquid-phase bonded Joint of single-crystalline Ni3Al[J]. Materials, 2019, 12(17): 2765. doi: 10.3390/ma12172765

图(13)  /  表(5)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  89
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回