Research progress of high-entropy amorphous materials and their additive manufacturing technology
-
摘要: 高熵非晶合金具有独特的物理、化学和力学性能以及更好的热稳定性,因而其制备技术成为国内外重要的研究热点之一. 然而利用传统技术制备高熵非晶材料时会产生晶粒粗大及材料浪费等缺点,难以满足工艺生产需要. 而增材制造技术的精准制造和快速冷却等特点可以解决这一问题,制备出各项性能优越的高熵非晶合金. 简要介绍了高熵非晶材料的研究体系和常用制造方法,着重阐述了高熵非晶材料的断裂强度、耐腐蚀性和热稳定性的研究,对增材制造技术的工艺特征和优势,以及利用增材制造技术制备高熵非晶合金的科学难点作出了总结. 结果表明,利用增材制造技术有利于获得致密均匀的高熵非晶材料,但对于非晶相形成的解释仅限于高熵合金4大效应.最后阐述了近年来利用常用的两种增材制造手段制造高熵非晶合金的研究,并对增材制造技术制备高熵非晶材料的发展趋势提出了展望.Abstract: High-entropy amorphous alloys (HEAAs) exhibit unique physical, chemical and mechanical properties as well as better thermal stability. Thus, its fabrication technology has become one of the important research hotspots at home and abroad. However, high-entropy amorphous materials manufactured by traditional technology had defects such as coarse crystal grains and material waste, which was difficult to meet the needs of processing production. The precise manufacturing and rapid cooling of additive manufacturing technology could solve the problems, and produce high entropy amorphous alloys with superior properties. This review research briefly introduced the research system and common preparation methods of high-entropy amorphous materials. It mainly focused on the research about fracture strength, corrosion resistance and thermal stability of high-entropy amorphous materials. The process features and advantages of additive manufacturing technology, and the scientific difficulties for applying this technology to fabricate high-entropy amorphous alloys were summarized. The results showed that additive manufacturing technology contributed to high-entropy amorphous materials with dense and uniform microstructures, while the explanation for the formation of amorphous phases was limited to the four effects of high-entropy alloys, Finally, a discussion with two additive manufacturing methods commonly used in the fabrication of high-entropy amorphous materials in recent years was made. Furthermore, the prospects for the development trend of fabricating high-entropy amorphous materials by additive manufacturing technology were put forward.
-
Keywords:
- high-entropy alloy /
- amorphous phase /
- additive manufacturing /
- grain refinement
-
0. 序言
高熵非晶合金(high-entropy amorphous alloy, HEAAs)是于高熵合金之后被发现的一种集合高熵合金(high-entropy alloy, HEA)和非晶合金优点的新型合金体系[1],它将高熵效应和非晶结构相结合,在成分上表现出多主元化特征,在结构上具有长程无序而短程有序的特征,而且其微观结构呈现出非晶态[2],这使得高熵非晶合金具有显著优于常规金属的耐腐蚀性、机械性能和热稳定性等[3-5],因此在磁学[6]和生物医学材料等[7]许多行业中有着广阔的应用前景. 对于高熵合金中非晶相形成的解释是高熵合金的4大效应:高熵效应、缓慢扩散效应、晶格畸变效应以及“鸡尾酒”效应. 这些效应不仅使得高熵合金具有出色的机械性能、耐腐蚀性以及优异的软磁性等,也使得合金中非晶相的形成更易解释.
目前,高熵合金的制备技术主要有电弧熔化和铸造[8-11]、选区激光熔化[12]、激光熔化沉积[13]、激光包覆[14-15]和机械合金化[16-17]等. 在这些方法中,电弧熔化和铸造是制备高熵合金的主要技术途径,但制备出的高熵合金形状简单且易发生成分偏析,同时会产生不同程度的气孔和夹杂等缺陷,只适合于实验室条件[18],无法进行大批量生产,这大大增加了高熵合金的应用局限性. 而增材制造技术利用“离散-堆积”成形原理可以直接制造出组织致密且性能优异的高熵合金材料,以及结构复杂但精度较高的零部件,从而有效减少材料的浪费[19]. 不仅如此,增材制造技术还利于合金晶粒超细化[20-22].
文中总结了国内外利用增材制造技术制备高熵非晶材料的研究现状,指出了目前研究的科学难点和未来发展方向,希望能为同行完善高熵非晶材料的可控制备提供借鉴.
1. 高熵非晶材料的发展现状
1.1 高熵非晶材料体系及制备方法
自具有非晶态的高熵合金被首次成功制备之后[23],迄今为止,国内外研究者们利用浇铸法、铜模铸造法和熔体快淬法等多种方法已经成功制备出一系列高熵非晶合金,常见的高熵非晶合金体系如表1所示. 由表1可知,高熵非晶合金的临界尺寸大小不一,根据临界尺寸大小可以将其分为粉末状、块状和条带状3种. 不仅如此,传统非晶合金[24]的非晶形成能力明显大于近原子比的高熵非晶合金[23, 26-27]. 这说明高熵合金的非晶形成能力与合金体系元素种类和比例以及制备方法有关.
表 1 典型高熵非晶合金系Table 1. Typical high-entropy amorphous alloy system高熵非晶合金系 制备方法 临界尺寸d/mm Zr41.2Ti13.8Cu12.5Ni10Be22.5[24] 浇铸法 >50 Ti20Zr20Hf20Cu20Ni20[23] 铜模铸造法 1.5 Sr20Ca20Yb20Mg20Zn20[25] 铜模铸造法 4 Er20Tb20Dy20Ni20Al20[25] 铜模铸造法 2 Pd20Pt20Cu20Ni20P20[26] 熔渣包覆水淬法 10 Fe20Si20B20Al20Ni20[27] 球磨法 — Ti20Zr20Cu20Ni20Be20[28] 铜模铸造法 3 CoCrCuFeNiZr0.6[4] 熔体快淬法 — Fe25Co25Ni25(B,Si)25[29] 铜模铸造法 1.5 Er18Gd18Y20Al24Co20[30] 铜模铸造法 5 Fe25Co25Ni25Mo5P10B10[31] 熔体快淬法 1.2 (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20[32] 熔体快淬法 2 Fe46.8Mo22.7Cr13.6Co7.6C4.8B2.3Y1.2Si1.0[33] 激光熔覆 — 1.2 高熵非晶材料性能研究
高熵非晶合金具有较高的断裂强度和弹性极限. Li等人[32]成功制备了断裂强度达3000 MPa的(Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20高熵大块金属玻璃,其临界尺寸最大为2 mm,塑性变形仅4%,其塑性仅次于弹性应变极限为0 ~ 2%的高熵非晶合金Zn20Ca20Sr20Yb20(Li0.55Mg0.45)20[34]. Ding等人[28]成功制备临界直径为3 mm的新型Ti20Zr20Cu20-Ni20Be20高熵块状金属玻璃,其断裂强度高达2 315 MPa,远高于传统的Zr或Ti基大块金属玻璃. 陶娟[35]对比分析了直径3 mm的Fe40Co20Ni20Si9B11,Fe30Co25Ni25Si9B11和Fe26.7Co26.7Ni26.6Si9B11 3种高熵非晶合金的抗压强度和塑性应变,结果表明三者均有良好的压缩强度和压缩塑性,其中,Fe30Co25Ni25Si9B11的断裂强度最高(1 808 MPa),而Fe40Co20Ni20Si9B11压缩塑性最好(16%). 故高熵非晶合金体系表现出的力学性能均优于常规合金.
HEAAs耐腐蚀性也引起的研究者的关注. 与常规非晶合金[36]有所区别的是,由Gao等人[25]制备的Sr20Ca20Yb20Mg20Zn20具有更优异的耐腐蚀性. Li等人[7]通过将合金元素Sr和Yb添加到原型三元Ca-Mg-Zn块状金属玻璃中,研究出一种新型块状非晶材料,即具有更好的耐腐蚀性的高熵非晶合金. Ding等人[37]测定了(Fe,Co,Ni,Cr)80B20和Fe80B20非晶态合金带在质量分数为3.5%的NaCl溶液、0.1 mol/L的H2SO4溶液和0.1 mol/L的HCl溶液中的极化曲线,如图1所示. 结果显示,具有多组元的高熵非晶合金电势更高,且其阳极电流密度更低,将合金成分改变为高熵型可以大大提高耐腐蚀性. 研究表明,镀层是一种提高材料耐腐蚀性的有效方法[38-39],基于优异的耐腐蚀性,高熵非晶材料在耐腐蚀涂层[40]方面也具有广阔的发展前景.
高熵合金中表现出较高的软磁性[41],因其具有强大的拓扑和化学无序结构. 高熵非晶合金通常表现出较大的磁熵变和制冷剂容量,这开拓了其在软磁方向的应用[42],例如用于磁制冷[43-45]等. 主要原因如下[35]:一是在高磁矩的作用下,铁磁性元素可以成为高熵元素;二是HEAAs的电阻率增大引起了较大的磁熵变,本质上是由于HEA中的拓扑失真和化学随机性造成的;三是HEA本身的晶体结构不复杂,有利于其延展性的增强. Satake等人[46]制备了具有非晶态结构的铁磁Fe-Co-Ni-(B, C, Si)高熵合金,证实了HEA在室温下的饱和磁化强度约为Fe基非晶态合金的一半.Qi等人[29]利用铜模铸造法研制出Fe25Co25Ni25(B, Si)25大块金属玻璃,并分别测得两种B和Si含量不同的金属玻璃的室温磁滞回线,如图2所示,两种合金均具有优质的的软磁性,即相当高的饱和磁化强度约为0.77 ~ 0.87 T,低矫顽力约为0 ~ 1.1 A/m,这些优异性能展现了高熵块状金属玻璃工程应用的良好前景.
优异的热稳定性也是高熵非晶合金的优异性能之一. 对于在高温下相对长期的应用,不能依靠动力学稳定,合金在使用条件下必须是热力学稳定的[47]. 根据吉布斯自由能式(1)[48]可知,高熵非晶合金的高混合熵会降低吉布斯自由能[47, 49],并且温度的升高会增强高混合熵对吉布斯自由能的降低作用[50],这较好地解释了高熵非晶合金热稳定好的原因.
$$\Delta {G_{\rm{i}}} = \Delta {H_{\rm{i}}} - T\Delta {S_{\rm{i}}}$$ (1) 式中:ΔGi为吉布斯自由能;ΔHi为混合焓;ΔSi为混合熵;T为温度.
杨铭等人[51]将高熵非晶合金同传统非晶合金的激活能值进行对比发现,前者高于后者近两倍,这说明只有温度加热到足够高时高熵非晶合金才会发生非晶态的转变过程,这也是其具有高热稳定性的内在因素. Tsai等人[52]利用扩散耦合法测量Co-Cr-Fe-Mn-Ni合金中Cr,Mn,Fe,Co和Ni的扩散参数,并将这些参数与各种常规面心立方金属中的参数进行了比较,结果如图3所示,Co-Cr-Fe-Mn-Ni合金的扩散系数比纯面心立方(fcc)金属和Fe-Cr-Ni(-Si)合金的扩散系数小,这是因为高熵非晶合金的晶格势能位点较多导致更高的归一化活化能和更低的扩散速率,从而产生迟滞扩散效应. 因此,高熵非晶合金优异的热稳定性主要来源于两方面:一是由于其自身的高熵效应降低了非晶转化过程的吉布斯自由能,导致非晶相形成的温度升高,提高了其热稳定性; 二是其迟滞扩散效应延缓了非晶基体转化为晶体相的过程,提高了非晶相在合金中的占比.
2. 增材制造技术制备高熵非晶合金的研究进展
2.1 增材制造技术及其特征
增材制造是通过3D模型数据接合材料以制造对象的过程,又被称为“快速制造”或“快速成形”. 和传统的减材制造方法相比,增材制造基于逐层增量制造[53],它能够有效利用原始原料并产生最少废物,同时可以达到理想的几何精度. 大多数相关的增材制造技术通常使用粉末或金属丝作为原料,通过聚焦的热源将其选择性地熔化并在随后的冷却中固结以形成零件[54]. 增材制造技术起初仅限于快速制造多孔结构和原型,但随着技术的进步,零件的质量和密度等得到了很大的提高,并且在工具刀片以及医疗设备中得到了应用,利用增材制造技术还可以精密可靠地制造包括钢[55]和铝[56]等多种材料. 在众多可用技术中,只有少数能够生产出满足工业性应用要求的金属零件,当前工业相关性比较高的增材制造技术有:激光熔覆、选区激光熔化(selective laser melting, SLM)、选区电子束熔化以及激光金属沉积.
增材制造技术在铝合金[57]、不锈钢[58]以及高熵合金[59]等材料中均有广泛应用,其原因主要分为两点:一是增材制造技术本身的优势,该技术打破传统加工工艺成形思路,可利用金属粉末直接获得复杂实体零件的精密加工;二是增材制造技术本身对材料的强化作用,通过对微小区域的精准控制,可制造出成分均匀致密、晶粒细化的合金材料. 由于技术本身“快热快冷”的特点,使得制备的材料具有呈层状结构且为非平衡态的组织,熔池内部会形成呈各向异性的胞状结构,这种胞状结构可能形成更微观的纳米颗粒,有利于位错集结,进而提高合金的强度和延展性[60].
2.2 增材制造高熵非晶合金科学难点
尽管增材制造技术已经在高熵合金领域有了广泛的研究和应用,但仍有许多困难亟待解决. 增材制造技术对合金粉末的要求严格[61],金属粉末的外观、元素含量、球形度、粒度及其分布会直接影响粉体的流动性和工件成形,其粒度均匀性越高、球形度越好,粉末流动性越好,同时粉末中B和Si等元素有助于提高液态金属抗氧化性,改善接头成形及性能. 特别是对于高温抗氧化性差的难熔高熵合金而言,若粉末纯度不够高,引入杂质元素,则会对制粉过程、工件成形以及接头综合性能产生较大的影响. 要玉宏等人[62]研究了B元素对高熵合金AlMo0.5NbTa0.5TiZr高温抗氧化性能的影响,发现适量B元素的添加不仅提高了高熵合金的抗氧化温度,还大幅度提升了其特定温度下的抗氧化时长. 此外,高熵非晶材料中金属元素之间由于电位等的差异使得其具有物理和化学复杂性,导致粉末与基体的相互作用机制不同于传统合金,仅通过试验无法完整建立高熵非晶材料组织与性能的联系. 杨阳祎玮等人[63]对通过热-熔体-微结构耦合的非等温相场模型进行求解发现,温度梯度对晶体界面的移动以及微结构的演化有重要作用,这为进一步解释熔池流动与接头关系提供了解决思路.
合金粉末的严选是利用增材制造技术成功制备高熵非晶合金的关键,通过控制金属粉末的成形和元素选择及其配比,有助于获得综合性能优异的样件. 此外,温度的严格把控也成为改善粉末流动性的关键. 因此,在利用增材制造技术制备高熵非晶合金的过程中,需要对粉末和制备技术进行严格选择.
2.3 增材制造高熵非晶合金研究现状
利用增材制造技术制备高熵非晶材料虽然可以实现材料的致密均匀性,但目前仍处于探索阶段. 有研究表明,激光选区熔化作用过程中凝固速度较快,这有利于制造大块非晶元件,并使得合金更加容易通过增材制造技术进行玻璃成形[64-65]. Guo等人[66]利用激光选区熔化技术制备了CoCrFeMnNi高熵合金,通过多方位定量评估其可加工性发现,磨削和铣削对材料表面的显微硬度有提升作用,但同时产生了压缩残余应力. 石杰[67]利用激光选区熔化技术实现了Fe68Mo5Ni5Cr2P12.5C5B2.5铁基非晶粉末和FeCoCrNiMn高熵合金粉末的混合打印,发现复合材料的断裂强度超过1 GPa,这为获得高强度材料开辟了新思路. Jung等人[68]使用SLM技术成功制备出具有优异软磁性能的块状非晶结构. Di等人[69]利用SLM进行3D打印制备了Zr基合金材料. 图4为原粉的X射线图和DSC曲线. 由图4a可知,一些较弱的布拉格峰(对应于Al5Ni3Zr2相)叠加在宽光谱上,这表明在SLM过程中发生了部分结晶. 利用差示扫描量热法获得的试验曲线如图4b所示,低强度的峰表明结晶相的含量相对较低,通过计算得通过3D打印得到的具有高强度(>1 500 MPa)的Zr基复合材料中非晶相的含量高达83%,试验表明在熔池中形成了完全非晶结构.
激光熔化沉积技术已被广泛用于涂层制备和难熔金属的零件修复[70],其特点是冷却速度快,这会促进高熵合金的玻璃化行为,这使得激光熔覆技术不失为一种获得高熵非晶涂层的手段. 李青宇等人[71]利用激光熔覆沉积技术制备了NbMoTaTi难熔高熵合金,其与真空电弧熔炼获得的样件相比,晶粒尺寸得到细化,成分未发生明显偏析. 黄留飞等人[72]利用激光熔化沉积制备了AlCoCrFeNi2.5高熵合金,发现其微观组织为柱状枝晶,合金抗拉强度达1 428 MPa,枝晶干处的面心立方相和间隙处的体心立方相的协同耦合提高了合金的力学性能. 通过激光熔覆FeCrCoNiSiB高熵自熔合金粉末在低碳钢上成功合成了一种新型的含有49%非晶相的复合涂层,形成的非晶层位于低碳钢的上层,导致上层的磨损率比底层的磨损率低25.9%[73]. 还研究了高熵合金中Fe/Co浓度比对粉末熔覆粉末玻璃成形能力的影响,Fe/Co浓度比约为1∶1的涂层表现出更高的非晶含量(超过66.7%)、显微硬度和高温耐磨性. 非晶相优化了磨损机理,进而提高了熔覆涂层的耐磨性[74].
3. 结束语
高熵非晶合金相关概念及其设计理念渐趋完善,并已在生物医学和软磁制冷等领域发展迅速并成功应用. 利用增材制造技术制备高熵非晶合金不仅优化了力学性能,也利于减少能源消耗,使块状金属玻璃用于医疗植入物、汽车和航空航天业的组件等. 高熵合金非常适合于制造具有各项优异性能的非晶涂层,特别是在使用激光熔覆技术时. 目前,已有多种高熵非晶材料通过激光熔覆的手段制得,例如FeCrCoNiSiB,FeCoBSiCNb和FeCoNiCrB等,然而这些非晶涂层并非完整的非晶相,其非晶组织含量最高达80%以上.因此,在未来研究中可以统筹激光熔覆、高熵合金材料和非晶材料三者的优点,制备出结构功能完备且性能优异的高熵非晶材料,同时需要进一步优化非晶组织的制备过程. 此外,还应运用热力学计算等方法,对高熵合金中非晶相的形成进行更加透彻的解释. 考虑到将来应用领域发展方向的不断变化,预计高熵非晶合金作为基础科学和工程材料的重要性将在21世纪稳步增长.
-
表 1 典型高熵非晶合金系
Table 1 Typical high-entropy amorphous alloy system
高熵非晶合金系 制备方法 临界尺寸d/mm Zr41.2Ti13.8Cu12.5Ni10Be22.5[24] 浇铸法 >50 Ti20Zr20Hf20Cu20Ni20[23] 铜模铸造法 1.5 Sr20Ca20Yb20Mg20Zn20[25] 铜模铸造法 4 Er20Tb20Dy20Ni20Al20[25] 铜模铸造法 2 Pd20Pt20Cu20Ni20P20[26] 熔渣包覆水淬法 10 Fe20Si20B20Al20Ni20[27] 球磨法 — Ti20Zr20Cu20Ni20Be20[28] 铜模铸造法 3 CoCrCuFeNiZr0.6[4] 熔体快淬法 — Fe25Co25Ni25(B,Si)25[29] 铜模铸造法 1.5 Er18Gd18Y20Al24Co20[30] 铜模铸造法 5 Fe25Co25Ni25Mo5P10B10[31] 熔体快淬法 1.2 (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20[32] 熔体快淬法 2 Fe46.8Mo22.7Cr13.6Co7.6C4.8B2.3Y1.2Si1.0[33] 激光熔覆 — -
[1] Wang W. High-entropy metallic glasses[J]. Jom, 2014, 66(10): 2067 − 2077. doi: 10.1007/s11837-014-1002-3
[2] Xie L, Xiong X, Zeng Y, et al. The wear properties and mechanism of detonation sprayed iron-based amorphous coating[J]. Surface and Coatings Technology, 2019, 366: 146 − 155. doi: 10.1016/j.surfcoat.2019.03.028
[3] Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloys-A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1 − 9.
[4] Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96 − 103. doi: 10.1016/j.intermet.2013.05.002
[5] Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 806: 901 − 908. doi: 10.1016/j.jallcom.2019.07.185
[6] Zhou K, Sun B, Liu G, et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122: 106801. doi: 10.1016/j.intermet.2020.106801
[7] Li H, Xie X, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia, 2013, 9(10): 8561 − 8573. doi: 10.1016/j.actbio.2013.01.029
[8] Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229 − 244. doi: 10.1016/j.jallcom.2016.02.257
[9] Nagase T, Mizuuchi K, Nakano T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X= V, Mo, W) high-entropy alloys[J]. Entropy, 2019, 21(5): 483. doi: 10.3390/e21050483
[10] Zhang P, Li Y, Chen Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800–1 200 ℃[J]. Vacuum, 2019, 162: 20 − 27. doi: 10.1016/j.vacuum.2019.01.026
[11] Hou L, Hui J, Yao Y, et al. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting[J]. Vacuum, 2019, 164: 212 − 218.
[12] Wang H, Zhu Z, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting[J]. Acta Materialia, 2020, 196: 609 − 625. doi: 10.1016/j.actamat.2020.07.006
[13] Wang Q, Amar A, Jiang C, et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119: 106727. doi: 10.1016/j.intermet.2020.106727
[14] Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100
[15] Yue T, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J]. Journal of Alloys and Compounds, 2014, 587: 588 − 593. doi: 10.1016/j.jallcom.2013.10.254
[16] Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering[J]. Journal of Alloys and Compounds, 2013, 553: 316 − 323. doi: 10.1016/j.jallcom.2012.11.146
[17] Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2015, 648: 217 − 224. doi: 10.1016/j.msea.2015.08.056
[18] Kang B, Lee J, Ryu H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering:A, 2018, 712: 616 − 624. doi: 10.1016/j.msea.2017.12.021
[19] Rane K, Strano M. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts[J]. Advances in Manufacturing, 2019, 7(2): 155 − 173. doi: 10.1007/s40436-019-00253-6
[20] 王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114 Wang Leilei, Zhang Zhanhui, Xu Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114
[21] Mendoza M Y, Samimi P, Brice D A, et al. Microstructures and grain refinement of additive-manufactured Ti-xW alloys[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3594 − 3605. doi: 10.1007/s11661-017-4117-7
[22] Bermingham M, Stjohn D, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
[23] Ma L, Wang L, Zhang T, et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys[J]. Materials Transactions, 2002, 43(2): 277 − 280. doi: 10.2320/matertrans.43.277
[24] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63(17): 2342 − 2344. doi: 10.1063/1.110520
[25] Gao X, Zhao K, Ke H, et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(21): 3557 − 3560. doi: 10.1016/j.jnoncrysol.2011.07.016
[26] Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics, 2011, 19(10): 1546 − 1554. doi: 10.1016/j.intermet.2011.05.030
[27] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2014, 355: 58 − 64. doi: 10.1016/j.jmmm.2013.11.049
[28] Ding H Y, Yao K F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2013, 364: 9 − 12. doi: 10.1016/j.jnoncrysol.2013.01.022
[29] Qi T, Li Y, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8 − 12. doi: 10.1016/j.intermet.2015.06.015
[30] Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass[J]. Acta Materialia, 2018, 155: 350 − 361. doi: 10.1016/j.actamat.2018.06.024
[31] Wu K, Liu C, Li Q, et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials, 2019, 489: 165404. doi: 10.1016/j.jmmm.2019.165404
[32] Li C, Li Q, Li M, et al. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 791: 947 − 951. doi: 10.1016/j.jallcom.2019.03.375
[33] Hou X, Du D, Chang B, et al. Influence of scanning speed on microstructure and properties of laser cladded Fe-based amorphous coatings[J]. Materials, 2019, 12(8): 1279. doi: 10.3390/ma12081279
[34] Zhao K, Xia X, Bai H, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters, 2011, 98(14): 141913. doi: 10.1063/1.3575562
[35] 陶娟. FeCoNi 基软磁高熵非晶合金及其相应的高熵合金的性能研究[D]. 郑州: 郑州大学, 2017. Tao Juan. Research on the properties of FeCoNi-based soft magnetic high-entropy amorphous alloy and its corresponding high-entropy alloy[D]. Zhengzhou: Zhengzhou University , 2017.
[36] Wang Y, Xie X, Li H, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. Acta Biomaterialia, 2011, 7(8): 3196 − 3208. doi: 10.1016/j.actbio.2011.04.027
[37] Ding J, Inoue A, Han Y, et al. High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 696: 345 − 352. doi: 10.1016/j.jallcom.2016.11.223
[38] Wang H, Liu L, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 286: 319 − 327. doi: 10.1016/j.apsusc.2013.09.079
[39] Yang H, Gao Y, Qin W, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy[J]. Surface and Coatings Technology, 2015, 281: 176 − 183. doi: 10.1016/j.surfcoat.2015.10.001
[40] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243 − 2267. doi: 10.1016/j.actamat.2010.11.027
[41] Lucas M S, Mauger L, Muñoz J A, et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109(7): 07E307. doi: 10.1063/1.3538936
[42] Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): 1 − 9.
[43] Huo J, Huo L, Li J, et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics, 2015, 117(7): 073902. doi: 10.1063/1.4908286
[44] Huo J, Huo L, Men H, et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe,Coand Ni) high-entropy bulk metallic glasses[J]. Intermetallics, 2015, 58: 31 − 35. doi: 10.1016/j.intermet.2014.11.004
[45] Belyea D D, Lucas M, Michel E, et al. Tunable magnetocaloric effect in transition metal alloys[J]. Scientific Reports, 2015, 5(1): 1 − 8. doi: 10.9734/JSRR/2015/14076
[46] Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65(7): 401 − 406. doi: 10.2497/jjspm.65.401
[47] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515 − 534. doi: 10.1038/s41578-019-0121-4
[48] Marques J G, Costa A L, Pereira C. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14536 − 14549. doi: 10.1016/j.ijhydene.2019.04.064
[49] Liu W, Wu Y, He J, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526 − 529. doi: 10.1016/j.scriptamat.2012.12.002
[50] Craievich P, Weinert M, Sanchez J, et al. Local stability of nonequilibrium phases[J]. Physical Review Letters, 1994, 72(19): 3076. doi: 10.1103/PhysRevLett.72.3076
[51] 杨铭, 刘雄军, 吴渊, 等. 高熵非晶合金研究进展[J]. 中国科学:物理学 力学 天文学, 2020, 50(6): 21 − 33. Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress in high-entropy amorphous alloys[J]. Science in China: Physics Mechanics Astronomy, 2020, 50(6): 21 − 33.
[52] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
[53] 王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125 Wang Tianqi, Li Tianxu, Li Liangyu, et al. Off-line programming technology for arc additive manufacturing of thin-walled components with complex structures[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125
[54] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
[55] 杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造18Ni马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002 Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002
[56] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
[57] 苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7): 5 − 8. Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum / steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 5 − 8.
[58] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002 Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
[59] Aramian A, Razavi S M J, Sadeghian Z, et al. A review of additive manufacturing of cermets[J]. Additive Manufacturing, 2020, 33: 101130. doi: 10.1016/j.addma.2020.101130
[60] Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2018, 17(1): 63 − 71. doi: 10.1038/nmat5021
[61] 尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295 Yin Yan, Zhao Chao, Pan Cunliang, et al. Effect of gas flow rate on the characteristics of RF plasma spheroidized GH4169 alloy powder[J]. Transactions of the China Welding Institution, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295
[62] 要玉宏, 梁霄羽, 金耀华, 等. 硼对AlMo0.5NbTa0.5TiZr难熔高熵合金组织和高温氧化性能的影响[J]. 表面技术, 2020, 49(2): 235 − 242,287. Yao Yuhong, Liang Xiaoyu, Jin Yaohua, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys[J]. Surface Technology, 2020, 49(2): 235 − 242,287.
[63] 杨阳祎玮, 易敏, 胥柏香. 粉末增材制造微结构的非等温相场模拟[J]. 中南大学学报(自然科学版), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003 Yangyang Yiwei, Yi Min, Xu Baixiang. Non-isothermal phase-field simulation of microstructure in powder-based additive manufacturing[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003
[64] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1−2): 37 − 41. doi: 10.1016/j.mattod.2013.01.018
[65] Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135: 133 − 141.
[66] Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy[J]. Materials & Design, 2018, 153: 211 − 220.
[67] 石杰. 3D打印高熵合金—铁基非晶合金复合材料[D]. 武汉: 华中科技大学, 2019. Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology , 2019.
[68] Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study[J]. Materials & Design, 2015, 86: 703 − 708.
[69] Di Ouyang , Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90: 128 − 134.
[70] Song H, Lei J, Xie J, et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 2019, 805: 551 − 564. doi: 10.1016/j.jallcom.2019.07.102
[71] 李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61 − 67. Li Qingyu, Li Dichen, Zhang Hang, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61 − 67.
[72] 黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积AlCoCrFeNi2.5高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110. Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
[73] Shu F, Liu S, Zhao H, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662 − 666. doi: 10.1016/j.jallcom.2017.08.248
[74] Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
-
期刊类型引用(1)
1. 陈鹏,邢军,孙黎君. 基于正则化SVD算法的660MW机组煤粉加热炉炉膛三维温度场重建. 工业加热. 2024(05): 58-63 . 百度学术
其他类型引用(2)