高级检索

射频器件超细引线键合射频性能仿真

王尚, 马竟轩, 杨东升, 徐佳慧, 杭春进, 田艳红

王尚, 马竟轩, 杨东升, 徐佳慧, 杭春进, 田艳红. 射频器件超细引线键合射频性能仿真[J]. 焊接学报, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001
引用本文: 王尚, 马竟轩, 杨东升, 徐佳慧, 杭春进, 田艳红. 射频器件超细引线键合射频性能仿真[J]. 焊接学报, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001
WANG Shang, MA Jingxuan, YANG Dongsheng, XU Jiahui, HANG Chunjin, TIAN Yanhong. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001
Citation: WANG Shang, MA Jingxuan, YANG Dongsheng, XU Jiahui, HANG Chunjin, TIAN Yanhong. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 1-7. DOI: 10.12073/j.hjxb.20201125001

射频器件超细引线键合射频性能仿真

基金项目: 装备预研领域基金(61409230705)
详细信息
    作者简介:

    王尚,博士,讲师;主要研究方向为系统级封装与可靠性和柔性印刷电子技术;Email:wangshang@hit.edu.cn

    通讯作者:

    田艳红,博士,教授,博士研究生导师;Email:tianyh@hit.edu.cn.

  • 中图分类号: TG 405.96

Research on the RF performance simulation of ultra-fine wire bonding of RF devices

  • 摘要: 随着雷达性能指标不断提高、体积不断压缩,作为其关键组成部分成之一的T/R(transmitter and receiver)组件也不断向小型化和高密度方向发展. 采用超高密度引线键合技术能够实现高密度射频器件封装,但也会带来键合焊点可靠性下降、电路射频性能差等问题. 针对键合线尺寸减小而引起射频性能下降的问题,采用HFSS软件探究了在0 ~ 20 GHz金带尺寸变化对电路射频性能的影响规律,并利用ANSYS Q3D和ADS软件对超细引线键合的电路进行阻抗匹配. 结果表明,对于金丝和金带而言,插入微带双枝短截线匹配结构均能明显提高电路的射频性能. 对于类型1结构,S21与S12的传输功率能达到−0.049 dB. 对于类型2结构,S21与S12的传输功率能达到−7.245 × 10−5 dB,说明类型2结构下的信号传输几乎无损耗. 该结果为超细引线键合技术在射频电路中的应用提供了理论指导.
    Abstract: With the continuous improvement of radar performance indicators and the continuous compression of the volume, the T/R (transmitter and receiver) component as one of its key components is also continuously developing in the direction of miniaturization and high density. Ultra-high-density wire bonding technology is adopted to realize high-density RF device packaging form. However, it will cause the reliability of bonding solder joints to decrease, and the circuit RF performance is poor. Aiming at the problem of the degradation of radio frequency performance caused by the small bond size, this paper used HFSS software to explore the influence of the change in the gold strip's size on the circuit radio frequency performance. And ANSYS Q3D and ADS software were used to match the impedance of the ultra-fine wire bonding circuit. The results show that for gold wire and gold ribbon, inserting the microstrip double-stub matching structure can significantly improve the radio frequency performance of the circuit. For type 1 structure, the transmission power of S21 and S12 can reach −0.049 dB. For type 2 Structure, the transmission power of S21 and S12 can reach −7.245 × 10−5 dB, indicating that the signal transmission under the type 2 structure is almost lossless. This result can lay a theoretical foundation for the application of ultra-fine wire bonding technology in radio frequency circuits.
  • 图  1   楔形键合示意图与其等效电路

    Figure  1.   Schematic diagram of wedge bonding and its equivalent circuit. (a) schematic diagram of wedge bonding; (b) wedge bond equivalent circuit

    图  2   金丝与微带线键合模型

    Figure  2.   Bonding model of gold wire and microstrip wire. (a) overall model; (b) enlarged view of gold wire bonding; (c) gold wire bonding structure parameters

    图  3   微波传输系统的匹配

    Figure  3.   Matching of microwave transmission system. (a) before matching; (b) after matching

    图  4   不同横截面宽度金带键合微波性能仿真结果

    Figure  4.   Microwave performance simulation results of gold ribbon bonding with different cross-sectional widths. (a) S11; (b) S21

    图  5   不同厚度金带键合微波性能仿真结果

    Figure  5.   Microwave performance simulation results of gold ribbon bonding with different thickness. (a) S11; (b) S21

    图  6   不同尺寸金带键合微波性能仿真结果

    Figure  6.   Microwave performance simulation results of gold ribbon bonding with different t sizes. (a) S11; (b) S21

    图  7   微带双枝短截线匹配两种电路结构

    Figure  7.   Two circuit structures of microstrip double-branch stub matching. (a) type 1; (b) type 2

    图  8   不同尺寸金丝键合的类型1电路的ADS仿真结果

    Figure  8.   ADS simulation results of Type 1 circuits. (a) two 10 μm diameter gold wires; (b) 25 μm × 5 μm gold ribbon

    图  9   插入两根直径10 μm金丝的类型1电路的S参数图

    Figure  9.   S-parameter diagram of type 1 circuit with two 10 μm diameter gold wires. (a) S11; (b) S12; (c) S21; (d) S22

    图  10   插入横截面为25 μm × 5 μm金带的类型1电路的S参数图

    Figure  10.   S-parameter diagram of type 1 circuit with 25 μm × 5 μm gold ribbon. (a) S11; (b) S12; (c) S21; (d) S22

    图  11   不同尺寸金丝键合的类型2电路的ADS仿真结果

    Figure  11.   ADS simulation results of type 2 circuits. (a) two 10 μm diameter gold wires; (b) 25 μm × 5 μm gold ribbon

    图  12   插入两根直径10 μm金丝的类型2电路的S参数图

    Figure  12.   S-parameter diagram of type 2 circuit with two 10 μm diameter gold wires. (a) S11; (b) S12; (c) S21; (d) S22

    图  13   插入横截面为25 μm × 5 μm金带的类型2电路的S参数图

    Figure  13.   S-parameter diagram of type 2 circuit with 25 μm × 5 μm gold ribbon. (a) S11; (b) S12; (c) S21; (d) S22

    表  1   2种匹配结构的峰值传输功率与对应频率

    Table  1   Peak transmission power and corresponding frequency of two matching structures

    结构类型金丝类型频率
    f/GHz
    传输功率
    η/dB
    1两根金丝8.5−0.049
    1金带8.5−0.049
    2两根金丝10−7.245 × 10−5
    2金带10−7.245 × 10−5
    注:表中的金丝类型分为2种,第1种为两根直径10 μm的金丝,第2种为横截面积为25 μm × 5 μm的金带.
    下载: 导出CSV
  • [1] 邵春生. 相控阵雷达研究现状与发展趋势[J]. 现代雷达, 2016, 38(6): 1 − 4, 12.

    Shao Chunsheng. Study status and development trend of phased array radar[J]. Modern Radar, 2016, 38(6): 1 − 4, 12.

    [2]

    Ortiz J A, Diaz J, Abosewal N, et al. Ultra-compact universal polarization X-band unit cell for high-performance active phased array radar[C]//2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), NY, USA: IEEE, 2016: 1-5.

    [3]

    Kim K, Kim H, Kim D, et al. Development of planar active phased array antenna for detecting and tracking radar[C]//2018 IEEE Radar Conference, NY, USA: IEEE, 2018: 0100-0103.

    [4]

    Kumar P, Kedar A, Singh A K. Subarray scheme for wide scan active phased array antennas[C]//2014 IEEE International Microwave and RF Conference, NY, USA: IEEE, 2014: 364-367.

    [5] 谭承, 喻忠军, 朱志强, 等. 基于LTCC技术的Ku波段四通道T/R组件研制[J]. 电子元件与材料, 2020, 39(4): 62 − 67.

    Tan Cheng, Yu Zhongjun, Zhu Zhiqiang, et al. Design of Ku-band four-channel T/R module based on LTCC technology[J]. Electronic Components and Materials, 2020, 39(4): 62 − 67.

    [6]

    Waldrop M M. The chips are down for Moore’s law[J]. Nature, 2016, 530(7589): 144 − 147. doi: 10.1038/530144a

    [7] 孙磊, 张屹, 陈明和, 等. 3D封装芯片焊点可靠性有限元分析[J]. 焊接学报, 2021, 42(1): 49 − 53.

    Sun Lei, Zhang Yi, Chen Minghe, et al. Finite element analysis of solder joint reliability of 3D packaging chip[J]. Transactions of the China Welding Institution, 2021, 42(1): 49 − 53.

    [8] 杨玉强, 李张治, 李德雨, 等. 基于ANSYS含体积型缺陷波纹管疲劳寿命研究[J]. 压力容器, 2020, 37(11): 33 − 38. doi: 10.3969/j.issn.1001-4837.2020.11.006

    Yang Yuqiang, Li Zhnagzhi, Li Deyu, et al. Research on fatigue life of bellows containing volumetric defects based on ANSYS[J]. Pressure Vessel Technology, 2020, 37(11): 33 − 38. doi: 10.3969/j.issn.1001-4837.2020.11.006

    [9]

    Sun Qingjie, Sang Haibo, Liu Yibo, et al. Cross section scan trace planning based on arc additive manufacturing[J]. China Welding, 2019, 28(4): 16 − 21.

    [10] 邹军. T/R组件中键合互连的微波特性和一致性研究[D]. 南京: 南京理工大学, 2009.

    Zou Jun. Research of microwave characteristics and consistency of bonding interconnects in T/R module[D]. Nanjing: Nanjing University of Science and Technology, 2009.

    [11] 李志力. 基于SiP技术的X波段T/R组件封装技术研究[D]. 成都: 电子科技大学, 2015.

    Li Zhili. Research on packaging technologies of X band T/R module based on SiP technology[D]. Chengdu: University of Electronic Science and Technology of China, 2015.

    [12] 姚帅. 基于LTCC技术的金丝键合及通孔互连微波特性研究[D]. 西安: 西安电子科技大学硕士学位论文, 2012.

    Yao Shuai. Investigations on microwave characteristics of gold wire bonding and Via Interconnects Based on LTCC technology[D]. Xi'an: Xidian University, 2012.

    [13]

    Ma T, Jiang Y, Fan Y, et al. A design of transition between microstrip line and semiconductor devices with gold-bonding wire[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, IEEE, 2011: 303-305.

    [14]

    Lee H Y. Wideband characterization of atypical bonding wire for microwave and millimeter wave integrated circuits[J]. IEEE Transactions Microwave Theory and Technology, 1995, 43(1): 63 − 68. doi: 10.1109/22.363006

  • 期刊类型引用(4)

    1. 谢勇,肖雨辰,唐会毅,王云春,侯兴哲,吴华,吴保安,谭生,孙玲. 射频组件用键合金带的研究进展. 电子与封装. 2024(05): 5-12 . 百度学术
    2. 孟志永,吉星照,张秀清,倪永婧,于国庆,张明. 接地共面波导与芯片级联结构设计与优化. 河北科技大学学报. 2024(04): 373-380 . 百度学术
    3. 任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法. 工矿自动化. 2023(02): 85-93 . 百度学术
    4. 杨东升,张贺,冯佳运,撒子成,王晨曦,田艳红. 电子封装微纳连接技术及失效行为研究进展. 焊接学报. 2022(11): 126-136+169 . 本站查看

    其他类型引用(4)

图(13)  /  表(1)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  47
  • PDF下载量:  108
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-11-24
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回