Research on the RF performance simulation of ultra-fine wire bonding of RF devices
-
摘要: 随着雷达性能指标不断提高、体积不断压缩,作为其关键组成部分成之一的T/R(transmitter and receiver)组件也不断向小型化和高密度方向发展. 采用超高密度引线键合技术能够实现高密度射频器件封装,但也会带来键合焊点可靠性下降、电路射频性能差等问题. 针对键合线尺寸减小而引起射频性能下降的问题,采用HFSS软件探究了在0 ~ 20 GHz金带尺寸变化对电路射频性能的影响规律,并利用ANSYS Q3D和ADS软件对超细引线键合的电路进行阻抗匹配. 结果表明,对于金丝和金带而言,插入微带双枝短截线匹配结构均能明显提高电路的射频性能. 对于类型1结构,S21与S12的传输功率能达到−0.049 dB. 对于类型2结构,S21与S12的传输功率能达到−7.245 × 10−5 dB,说明类型2结构下的信号传输几乎无损耗. 该结果为超细引线键合技术在射频电路中的应用提供了理论指导.Abstract: With the continuous improvement of radar performance indicators and the continuous compression of the volume, the T/R (transmitter and receiver) component as one of its key components is also continuously developing in the direction of miniaturization and high density. Ultra-high-density wire bonding technology is adopted to realize high-density RF device packaging form. However, it will cause the reliability of bonding solder joints to decrease, and the circuit RF performance is poor. Aiming at the problem of the degradation of radio frequency performance caused by the small bond size, this paper used HFSS software to explore the influence of the change in the gold strip's size on the circuit radio frequency performance. And ANSYS Q3D and ADS software were used to match the impedance of the ultra-fine wire bonding circuit. The results show that for gold wire and gold ribbon, inserting the microstrip double-stub matching structure can significantly improve the radio frequency performance of the circuit. For type 1 structure, the transmission power of S21 and S12 can reach −0.049 dB. For type 2 Structure, the transmission power of S21 and S12 can reach −7.245 × 10−5 dB, indicating that the signal transmission under the type 2 structure is almost lossless. This result can lay a theoretical foundation for the application of ultra-fine wire bonding technology in radio frequency circuits.
-
Keywords:
- ultra-fine wire bonding /
- RF performance /
- impedance matching
-
-
表 1 2种匹配结构的峰值传输功率与对应频率
Table 1 Peak transmission power and corresponding frequency of two matching structures
结构类型 金丝类型 频率
f/GHz传输功率
η/dB1 两根金丝 8.5 −0.049 1 金带 8.5 −0.049 2 两根金丝 10 −7.245 × 10−5 2 金带 10 −7.245 × 10−5 注:表中的金丝类型分为2种,第1种为两根直径10 μm的金丝,第2种为横截面积为25 μm × 5 μm的金带. -
[1] 邵春生. 相控阵雷达研究现状与发展趋势[J]. 现代雷达, 2016, 38(6): 1 − 4, 12. Shao Chunsheng. Study status and development trend of phased array radar[J]. Modern Radar, 2016, 38(6): 1 − 4, 12.
[2] Ortiz J A, Diaz J, Abosewal N, et al. Ultra-compact universal polarization X-band unit cell for high-performance active phased array radar[C]//2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), NY, USA: IEEE, 2016: 1-5.
[3] Kim K, Kim H, Kim D, et al. Development of planar active phased array antenna for detecting and tracking radar[C]//2018 IEEE Radar Conference, NY, USA: IEEE, 2018: 0100-0103.
[4] Kumar P, Kedar A, Singh A K. Subarray scheme for wide scan active phased array antennas[C]//2014 IEEE International Microwave and RF Conference, NY, USA: IEEE, 2014: 364-367.
[5] 谭承, 喻忠军, 朱志强, 等. 基于LTCC技术的Ku波段四通道T/R组件研制[J]. 电子元件与材料, 2020, 39(4): 62 − 67. Tan Cheng, Yu Zhongjun, Zhu Zhiqiang, et al. Design of Ku-band four-channel T/R module based on LTCC technology[J]. Electronic Components and Materials, 2020, 39(4): 62 − 67.
[6] Waldrop M M. The chips are down for Moore’s law[J]. Nature, 2016, 530(7589): 144 − 147. doi: 10.1038/530144a
[7] 孙磊, 张屹, 陈明和, 等. 3D封装芯片焊点可靠性有限元分析[J]. 焊接学报, 2021, 42(1): 49 − 53. Sun Lei, Zhang Yi, Chen Minghe, et al. Finite element analysis of solder joint reliability of 3D packaging chip[J]. Transactions of the China Welding Institution, 2021, 42(1): 49 − 53.
[8] 杨玉强, 李张治, 李德雨, 等. 基于ANSYS含体积型缺陷波纹管疲劳寿命研究[J]. 压力容器, 2020, 37(11): 33 − 38. doi: 10.3969/j.issn.1001-4837.2020.11.006 Yang Yuqiang, Li Zhnagzhi, Li Deyu, et al. Research on fatigue life of bellows containing volumetric defects based on ANSYS[J]. Pressure Vessel Technology, 2020, 37(11): 33 − 38. doi: 10.3969/j.issn.1001-4837.2020.11.006
[9] Sun Qingjie, Sang Haibo, Liu Yibo, et al. Cross section scan trace planning based on arc additive manufacturing[J]. China Welding, 2019, 28(4): 16 − 21.
[10] 邹军. T/R组件中键合互连的微波特性和一致性研究[D]. 南京: 南京理工大学, 2009. Zou Jun. Research of microwave characteristics and consistency of bonding interconnects in T/R module[D]. Nanjing: Nanjing University of Science and Technology, 2009.
[11] 李志力. 基于SiP技术的X波段T/R组件封装技术研究[D]. 成都: 电子科技大学, 2015. Li Zhili. Research on packaging technologies of X band T/R module based on SiP technology[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[12] 姚帅. 基于LTCC技术的金丝键合及通孔互连微波特性研究[D]. 西安: 西安电子科技大学硕士学位论文, 2012. Yao Shuai. Investigations on microwave characteristics of gold wire bonding and Via Interconnects Based on LTCC technology[D]. Xi'an: Xidian University, 2012.
[13] Ma T, Jiang Y, Fan Y, et al. A design of transition between microstrip line and semiconductor devices with gold-bonding wire[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, IEEE, 2011: 303-305.
[14] Lee H Y. Wideband characterization of atypical bonding wire for microwave and millimeter wave integrated circuits[J]. IEEE Transactions Microwave Theory and Technology, 1995, 43(1): 63 − 68. doi: 10.1109/22.363006
-
期刊类型引用(4)
1. 谢勇,肖雨辰,唐会毅,王云春,侯兴哲,吴华,吴保安,谭生,孙玲. 射频组件用键合金带的研究进展. 电子与封装. 2024(05): 5-12 . 百度学术
2. 孟志永,吉星照,张秀清,倪永婧,于国庆,张明. 接地共面波导与芯片级联结构设计与优化. 河北科技大学学报. 2024(04): 373-380 . 百度学术
3. 任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法. 工矿自动化. 2023(02): 85-93 . 百度学术
4. 杨东升,张贺,冯佳运,撒子成,王晨曦,田艳红. 电子封装微纳连接技术及失效行为研究进展. 焊接学报. 2022(11): 126-136+169 . 本站查看
其他类型引用(4)