高级检索

15-5PH钢K-TIG焊熔池流动行为分析

冯涛, 吕祚翔, 刘俊, 段琼

冯涛, 吕祚翔, 刘俊, 段琼. 15-5PH钢K-TIG焊熔池流动行为分析[J]. 焊接学报, 2021, 42(8): 91-96. DOI: 10.12073/j.hjxb.20201015002
引用本文: 冯涛, 吕祚翔, 刘俊, 段琼. 15-5PH钢K-TIG焊熔池流动行为分析[J]. 焊接学报, 2021, 42(8): 91-96. DOI: 10.12073/j.hjxb.20201015002
FENG Tao, LV Zuoxiang, LIU Jun, DUAN Qiong. Analysis of flow behavior in K-TIG molten pool of 15-5PH steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 91-96. DOI: 10.12073/j.hjxb.20201015002
Citation: FENG Tao, LV Zuoxiang, LIU Jun, DUAN Qiong. Analysis of flow behavior in K-TIG molten pool of 15-5PH steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 91-96. DOI: 10.12073/j.hjxb.20201015002

15-5PH钢K-TIG焊熔池流动行为分析

详细信息
    作者简介:

    冯涛,博士,副教授;主要从事特种材料的焊接及材料的表面改性;Email:ft_210750@163.com

  • 中图分类号: TG 406

Analysis of flow behavior in K-TIG molten pool of 15-5PH steel

  • 摘要: 采用K-TIG焊实现15-5PH钢中厚板的焊接,并借助示踪法研究K-TIG焊熔池的流动行为. 结果表明,K-TIG穿孔型焊接时,焊缝上部为马兰戈尼对流圈,下部为表面张力与洛伦兹力导致的对流圈,两个对流圈中间为过渡区. 示踪法表明,熔池上部和下部W元素呈弧形分布于对流圈外围,而在过渡区中W元素未出现明显形状. 熔池下方对流圈EDS分析结果表明,熔池下方的熔融金属以内旋方式流动. 熔池流动计算及试验结果均表明,熔池上部和下部流动剧烈,但是中间层流动加速度很小,且随着焊接热输入的增大,中间层流动加速度有降低的趋势,中间层晶粒有长大趋势.
    Abstract: K-TIG was used to weld 15-5PH plate. Tracing technique was used to anlysis K-TIG molten pool flow behavior. The welding beam consisted of three parts: the upper part was the marangoni convection circle produced by surface tension, the lower part was the convective circle produced by the interaction of surface tension and lorentz force, and the transition zone between the upper and lower convection circles. The trace method indicated that the W elements in the upper and lower parts of the molten pool were distributed in an arc shape around the convective zone, but the W element was no obvious shape in the transition zone. EDS analysis was carried out on the flow ring under the molten pool, and the results showed that the molten metal under the molten pool flowed by internal rotation. The results of calculation and test show that the upper and lower parts of the molten pool flowed violently, but the flow velocity of the middle layer was small. With the increase of welding heat input, the flow velocity of the middle layer had a tendency to decrease, and the grain size of the intermediate layer tended to grow.
  • 15-5PH钢因含有Cr,Cu,Nb,Al,Ti等合金元素而具有良好耐腐蚀性,且这些合金元素可形成沉淀相和金属间化合物,使母材具有良好的力学性能,可满足航天航空、海洋和核工业等各种恶劣环境的使用要求,其中厚板常被应用于机翼梁,高压阀门,汽轮机压缩机叶片等[1-4]. 目前对15-5PH钢的研究主要集中于热处理方面[5-7],对其焊接性的研究多采用等离子弧焊接、TIG焊等4 mm以下的薄板焊接[8-10].

    为了提高15-5PH钢中厚板的焊接质量和焊接效率,扩大15-5PH钢中厚板的应用,选取8 mm厚的15-5PH板材为研究对象,选用K-TIG焊接方法,并借助示踪法研究了K-TIG焊接熔池的流动行为,建立了15-5PH钢K-TIG焊熔池的流体动力学数学模型,计算了焊接熔池不同区域熔融金属流动的加速度.

    试验所用的15-5PH钢的化学成分见表1,试验采用I形坡口,单面焊双面成形,钨极直径10 mm,钨极尖端夹角60 °,钨极距母材2 mm,焊接电压21.7 V,氩气为保护气体,焊缝正面氩气流量20 L/min,背面保护气体流量15 L/min,试验的其它焊接参数见表2.

    表  1  15-5PH不锈钢化学成分(质量分数,%)
    Table  1.  Chemical constituents of 15-5PH
    CSiCrNiPSCuNb
    0.07114.24.80.0400.0302.860.25
    下载: 导出CSV 
    | 显示表格
    表  2  15-5PH钢K-TIG焊接参数
    Table  2.  Welding parameters of 15-5PH stainless steel
    试验
    编号
    焊接电流
    I/A
    焊接速度
    v/(mm·s−1)
    焊接热输入
    E/(kJ·cm−1)
    T1 570 6 20.6
    T2 540 5 23.4
    T3 570 5 24.7
    下载: 导出CSV 
    | 显示表格

    示踪法试验中,在15-5PH钢板正面钻取直径2 mm,深度4 mm的孔,在孔中埋入直径为2 ~ 10 μm的钨粉. 焊后在小孔位置取样,用Fry试剂腐蚀后观察其形貌,并对其进行EDS面扫描,观察钨元素的分布.

    焊缝宏观形貌见图1. 由图1可见,焊缝横截面呈现明显的3个区域,分别为表面张力驱动的马兰戈尼对流圈a[11],洛伦兹力和表面张力共同驱动的对流圈c,以及中间的过渡区域b[12]. 分别对3个区域进行EDS扫描,通过W元素的分布,推断熔池中熔融金属的运动方式如图2所示.

    图  1  示踪法焊缝宏观横截面
    Figure  1.  Weld macro cross section of trace method
    图  2  焊缝不同区域W元素分布
    Figure  2.  Distribution of tungsten in different regions of weld. (a) a zone; (b) b zone; (c) c zone

    图2a可见,在熔池上部对流圈中,W元素呈弧形分布,这是因为W元素密度远大于Fe,在离心力的作用下,分布于对流圈的外围. 由图2b可见在中间过渡层中,W元素呈现明显的形状,而非均匀的分布在焊缝中. 由图2c可见在熔池下部对流圈中,W元素也呈弧形分布在对流圈外围.

    为确定焊缝熔池各部分熔融金属的流动方向,对焊缝组织的生长方向和W元素浓度分布差异性来进行分析.

    图3为焊后接头的宏观金相. 由图3可见,在A区域马兰戈尼对流圈外围,树枝晶并未垂直熔合线向焊缝中心生长,而是呈现弧形,这与熔融金属在凝固过程中,受到了对流圈涡流运动的影响. 中心等轴晶为分界线,将左右两个对流圈分开. 在B区域,树枝晶沿着过冷方向较笔直的向中心线生长,这说明该区域在凝固过程中,熔融金属运动速度缓慢. 在C区域,树枝晶同样受涡流运动的影响而呈弧状.

    图  3  宏观焊缝组织生长方向
    Figure  3.  Microstructure growth direction of macro weld

    对熔池下方对流圈中的4个典型位置进行EDS成分扫描,位置选择如图4所示,W元素浓度分布见图5.

    图  4  熔池下方对流圈EDS扫描
    Figure  4.  EDS scanning of convection zone under the molten pool
    图  5  焊缝下方对流圈不同位置钨元素含量扫描
    Figure  5.  Scanning of tungsten content in different positions. (a) spot 1; (b) spot 2; (c) spot 3; (d) spot 4

    图5可见,位置1,2,3,4的W元素含量分别为0.4%,0.7%,0.5%,0.3%. 在测试区域中,W元素沿顺时针方向由1点运动至2点. 由于熔池降温迅速,熔融金属粘性增加,W元素由3点运动到4点变得困难,导致由3点到4点W元素含量逐渐下降. 由此推断,在熔池下部对流区,熔融金属以内旋方式流动.

    上下对流圈与中间层的速度存在差异,通过计算焊缝不同区域熔融金属加速度的大小,判断其运动状态. 为简化计算,做如下假设.

    (1)在考虑流体粘性作用下,建立的熔池流动性模型如图6所示,忽略因流圈形状不规则导致的能量损失. 试验测量结果如图7所示.

    图  6  K-TIG焊熔池流动模型
    Figure  6.  K-TIG molten pool flow model
    图  7  不同焊接热输入下焊接接头的剪切层长度
    Figure  7.  Shear layer length of welded joint under different welding heat input. (a) E = 20.6 kJ/cm; (b) E = 23.4 kJ/cm; (c) E = 24.7 kJ/cm

    (2)电弧完全穿透板材,形成小孔型焊接过程.

    (3)流体体积在运动过程中,不会随着温度、压力等因素而发生改变,为不可压缩的非牛顿流体.

    (4)熔池中上下两个对流圈可以通过中间层完整的传递能量与速度,不发生损耗.

    $$u\frac{{\partial u}}{{\partial x}} + \omega \frac{{\partial u}}{{\partial {\textit{z}}}} = - \frac{1}{\rho }\frac{{\partial P}}{{\partial x}} + \frac{1}{\rho }\frac{\partial }{{\partial {\textit{z}}}}\left(\mu \frac{{\partial u}}{{\partial {\textit{z}}}} - \rho \overline {{u'}{\omega '}} \right)$$ (1)
    $$\frac{{\partial u}}{{\partial x}} + \frac{{\partial \omega }}{{\partial {\textit{z}}}} = 0$$ (2)
    $$\frac{{\partial P}}{{\partial {\textit{z}}}} = 0$$ (3)

    式中:$u\dfrac{\partial u}{\partial x}+\omega \dfrac{\partial u}{\partial {\textit{z}}}$为剪切层的加速度;l为剪切层长度;δ为剪切层厚度;ux方向运动速度;$ \omega $z方向的运动速度;$ \;\rho $为液体密度;$\; \mu $为液体粘度;P为熔融金属受到的作用力;$\; \rho \overline{u'\omega '} $为雷诺切应力.

    由式(1) ~ 式(3)可推导出薄剪切层公式(4). 在层流层中雷诺切应力$ \;\rho \overline{u'\omega '}\mathrm{可} $忽略不计. 将边界层厚度δ(式(5))和运动学粘性系数$\nu $(式(6))代入式(4),整理后得到式(7).

    $$u\frac{{\partial u}}{{\partial x}} + \omega \frac{{\partial u}}{{\partial {\textit{z}}}} = u\frac{{du}}{{dx}} + \frac{1}{\rho }\frac{\partial }{{\partial {\textit{z}}}}\left(\mu \frac{{\partial u}}{{\partial {\textit{z}}}} - \rho \overline {{u'}{\omega '}} \right)$$ (4)
    $$\delta = 5.3{\left( {\frac{{\nu x}}{{{u_{}}}}} \right)^{0.5}}$$ (5)
    $$\nu = \frac{\mu }{\rho }$$ (6)
    $$u\frac{{\partial u}}{{\partial x}} + w\frac{{\partial u}}{{\partial {\textit{z}}}} = \frac{{{u^2}}}{l} + \frac{1}{\rho }\frac{\partial }{{\partial \delta }}\left(\mu \frac{u}{\delta }\right)$$ (7)

    由于无法直接测量出对流圈熔融金属的流动速度,所以将S KOU与Heiple C R[7-8]通过模拟的方法得出的对流圈速度为1 × 103 mm/s的量级带入式(7),同时,为简化计算,用边界层的参数lδ替换xz,可得到熔池对流圈粘性剪切层的加速度,即

    $$u\frac{{\partial u}}{{\partial x}} + w\frac{{\partial u}}{{\partial {\textit{z}}}} = \frac{{{\mu ^2}}}{l} - \frac{1}{\rho }\frac{{\mu u}}{{{{\left( {5.3\dfrac{{\rho l}}{{\mu u}}} \right)}^2}}}$$ (8)

    通过粘性剪切层,上下两个对流圈分别对中间层产生了作用力,将纳维-斯托克斯方程(式(9))对xyz轴分别列方程并写成标量形式如式(10) ~ 式(12).

    $$ \frac{{{\rm{d\vec v}}}}{{dt}} = \vec F - \rho \nabla P + \nu {\nabla ^2}\overrightarrow V $$ (9)
    $$ \frac{{\partial {{u}}}}{{\partial {\rm{t}}}}{{ + u}}\frac{{\partial {{u}}}}{{\partial {\rm{x}}}}{{ + v}}\frac{{\partial u}}{{\partial y}} + w\frac{{\partial u}}{{\partial {\textit{z}}}} = Fx - \frac{1}{\rho }\frac{{\partial P}}{{\partial x}} + \nu {\nabla ^2}{{u}} $$ (10)
    $$\frac{{\partial v}}{{\partial {\rm{t}}}} + {{u}}\frac{{\partial v}}{{\partial {\rm{x}}}}{{ + v}}\frac{{\partial v}}{{\partial y}} + w\frac{{\partial v}}{{\partial {\textit{z}}}} = Fy - \frac{1}{\rho }\frac{{\partial P}}{{\partial y}} + \nu {\nabla ^2}v$$ (11)
    $$\frac{{\partial w}}{{\partial {\rm{t}}}} + {{u}}\frac{{\partial w}}{{\partial {\rm{x}}}}{{ + v}}\frac{{\partial w}}{{\partial y}} + w\frac{{\partial w}}{{\partial {\textit{z}}}} = F{\textit{z}} - \frac{1}{\rho }\frac{{\partial P}}{{\partial {\textit{z}}}} + \nu {\nabla ^2}w$$ (12)

    在满足如下情况,可推导出式(13) ~ 式(15).

    (1)流体在(xz)平面上x轴作定常运动,u ≠ 0,v = w = 0.

    (2)不考虑y方向的作用力,即Fy = 0.

    (3)熔融金属在x轴方向运动的加速度$\dfrac{\partial {u}}{\partial \mathrm{t}}\ne 0$

    $$\frac{{\partial u}}{{\partial t}} = {F_1}_2 - {F_3} - \frac{1}{\rho }\frac{{\partial P}}{{\partial x}} + \nu {\nabla ^2}{{u}}$$ (13)
    $${\rm{0 = - }}\frac{1}{\rho }\frac{{\partial P}}{{\partial y}}$$ (14)
    $$0 = - g - \frac{1}{\rho }\frac{{\partial P}}{{\partial {\textit{z}}}}$$ (15)

    将式(14)和式(15)代入式(13),可得到中间过渡层的运动加速度,即

    $$\begin{split}& \dfrac{{\partial u}}{{\partial t}} = \rho \left( {\dfrac{{{\mu ^2}}}{{{l_1}}} - \dfrac{1}{\rho }\dfrac{{\mu u_1^{}}}{{{{\left( {5.3\dfrac{{\rho {l_1}}}{{\mu {u_1}}}} \right)}^2}}} - \dfrac{{{\mu ^2}}}{{{l_2}}} - \dfrac{1}{\rho }\dfrac{{\mu {u_2}}}{{{{\left( {5.3\dfrac{{\rho {l_2}}}{{\mu {u_2}}}} \right)}^2}}}} \right) +\\& \nu {\nabla ^2}{{u - }}\dfrac{1}{\rho }\dfrac{{\partial ( - \rho g{\textit{z}} + {P_1}(x))}}{{\partial x}} \end{split}$$ (16)

    将测得的上方对流圈边界长度l1、下方对流圈边界长度l2及速度u1u2带入式(8)和式(16),可以得到上对流圈、下对流圈及中间过渡层的加速度大小(表3). 测量不同热输入下焊接接头的剪切层长度,如图8所示,得到T1,T2,T3的上方对流圈的剪切层长度l1分为7.15,7.47,7.64 mm,下方对流圈的剪切层长度l2分别为1.19,1.46,1.6 mm,上下两个对流圈的剪切层长度都随着焊接热输入的增加而增加. 由表3可得,随热输入增加,中间层的加速度逐渐降低,中间层的搅拌作用减弱不同参数下,焊缝中间过渡区的微观组织如图8所示. 由图8可见随焊接热输入的增加,焊缝中间层的加速度减小,熔融金属运动变缓,中间层晶粒逐渐增大.

    表  3  焊接热输入对中间过渡层的影响
    Table  3.  Effect of welding heat input on middle layer
    试验
    编号
    上方对流圈边界层长度l1/mm下方对流圈边界层长度l2/mm上方对流圈边界层加速度a1/(m·s−2)下方对流圈边界层加速度a2/(m·s−2)中间过渡层加速度a3/(m·s−2)
    T1 7.15 1.19 139 840 0.058
    T2 7.47 1.46 134 746 0.049
    T3 7.64 1.6 130 625 0.044
    下载: 导出CSV 
    | 显示表格
    图  8  焊缝中间过渡区的微观组织
    Figure  8.  Dendrite structure in the middle transition zone of the weld. (a) T1; (b) T2; (c) T3

    (1)采用K-TIG穿孔型焊接实现15-5PH钢中厚板的焊接,焊后焊缝上部和下部均为以内旋方式流动的对流圈,两个对流圈之间为中间过渡区. 焊缝上部和下部的对流圈外围,树状晶呈现弧形生长. 中心等轴晶作为分界线,将左右两个对流圈分开. 而在中间过渡区中,树枝晶沿着过冷方向中心线生长.

    (2)示踪法试验表明,W元素呈弧形分布于上下两个对流圈外围,而在过渡区中W元素未呈现明显形状. 对熔池下方对流圈进行EDS分析,结果表明,W元素含量分别为0.4%,0.7%,0.5%,0.3%. 根据W元素浓度分布判断,在熔池下部区域中,W元素以顺时针内旋方式进行运动.

    (3) T1,T2,T3的上方对流圈的剪切层长度l1分为7.15,7.47,7.64 mm,下方对流圈的剪切层长度l2分别为1.19,1.46,1.6 mm,其上下两个对流圈的剪切层长度都随着焊接热输入的增加而增加,但熔池流动加速度降低. 中间层熔池流动的加速度随着热输入的增加,由0.058 m/s2下降为0.044 m/s2,同时晶粒有长大趋势.

  • 图  1   示踪法焊缝宏观横截面

    Figure  1.   Weld macro cross section of trace method

    图  2   焊缝不同区域W元素分布

    Figure  2.   Distribution of tungsten in different regions of weld. (a) a zone; (b) b zone; (c) c zone

    图  3   宏观焊缝组织生长方向

    Figure  3.   Microstructure growth direction of macro weld

    图  4   熔池下方对流圈EDS扫描

    Figure  4.   EDS scanning of convection zone under the molten pool

    图  5   焊缝下方对流圈不同位置钨元素含量扫描

    Figure  5.   Scanning of tungsten content in different positions. (a) spot 1; (b) spot 2; (c) spot 3; (d) spot 4

    图  6   K-TIG焊熔池流动模型

    Figure  6.   K-TIG molten pool flow model

    图  7   不同焊接热输入下焊接接头的剪切层长度

    Figure  7.   Shear layer length of welded joint under different welding heat input. (a) E = 20.6 kJ/cm; (b) E = 23.4 kJ/cm; (c) E = 24.7 kJ/cm

    图  8   焊缝中间过渡区的微观组织

    Figure  8.   Dendrite structure in the middle transition zone of the weld. (a) T1; (b) T2; (c) T3

    表  1   15-5PH不锈钢化学成分(质量分数,%)

    Table  1   Chemical constituents of 15-5PH

    CSiCrNiPSCuNb
    0.07114.24.80.0400.0302.860.25
    下载: 导出CSV

    表  2   15-5PH钢K-TIG焊接参数

    Table  2   Welding parameters of 15-5PH stainless steel

    试验
    编号
    焊接电流
    I/A
    焊接速度
    v/(mm·s−1)
    焊接热输入
    E/(kJ·cm−1)
    T1 570 6 20.6
    T2 540 5 23.4
    T3 570 5 24.7
    下载: 导出CSV

    表  3   焊接热输入对中间过渡层的影响

    Table  3   Effect of welding heat input on middle layer

    试验
    编号
    上方对流圈边界层长度l1/mm下方对流圈边界层长度l2/mm上方对流圈边界层加速度a1/(m·s−2)下方对流圈边界层加速度a2/(m·s−2)中间过渡层加速度a3/(m·s−2)
    T1 7.15 1.19 139 840 0.058
    T2 7.47 1.46 134 746 0.049
    T3 7.64 1.6 130 625 0.044
    下载: 导出CSV
  • [1] 刘海涛, 司超阳, 霍登平, 等. 激光熔覆修复15-5PH不锈钢的拉伸性能及组织研究[J]. 航空制造技术, 2017(10): 86 − 90.

    Liu Haitao, Si Chaoyang, Huo Dengping, et al. Study on tensile property and microstructure of laser cladding repaired of 15-5PH stainless steel[J]. Aeronautical Manufacturing Technology, 2017(10): 86 − 90.

    [2]

    Nong X D, Zhou X L, Li J H, et al. Selective laser melting and heat treatment of precipitation hardening stainless steel with a refined microstructure and excellent mechanical properties[J]. Scripta Materialia, 2020, 178: 7 − 12. doi: 10.1016/j.scriptamat.2019.10.040

    [3]

    Dallas Roberts, Yi Zhang, Indrajit Charit, et al. A comparative study of microstructure and high-temperature mechanical properties of 15-5 PH stainless steel processed via additive manufacturing and traditional manufacturing[J]. Progress in Additive Manufacturing. 2018, 3(3): 183-190.

    [4] 闫成龙. 庞巴迪Q400飞机垂尾方向舵安装接头孔的精加工方法[J]. 现代制造技术与装备, 2020, 56(9): 150 − 151.

    Yan Chenglong. The finish machining method for the installation joint holes of the aviation Q400 bombardier vertical rudder[J]. Modern Manufacturing Technology and Equipment, 2020, 56(9): 150 − 151.

    [5]

    Abdelshehid M, Mahmodieh K, Mori K, et al. On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel[J]. Engineering Failure Analysis, 2007, 14(4): 626 − 631.

    [6] 华小珍, 魏振伟, 刘智勇, 等. 固溶处理对15-5PH不锈钢马氏体相变的影响[J]. 金属热处理, 2011(8): 67 − 70.

    Hua Xiaozhen, Wei Zhenwei, Liu Zhiyong, et al. Effect of solution treatment on martensitic transformation of 15-5PH stainless steel[J]. Heat Treatment of Metals, 2011(8): 67 − 70.

    [7] 特日格乐, 张玉妥. 15-5PH不锈钢CCT曲线与固溶冷却方式研究[J]. 沈阳理工大学学报, 2020, 39(4): 21 − 24,30.

    TE Rigele, Zhang Yutuo. Research of the CCT curve and solution cooling method of 15-5PH stainless steel[J]. Journal of Shenyang Ligong University, 2020, 39(4): 21 − 24,30.

    [8]

    Jing Zhang, Bin Hu, Yi Zhang, et al. Comparison of virgin and reused 15-5 PH stainless steel powders for laser powder bed fusion process[J]. Progress in Additive Manufacturing, 2018, 3(1−2): 11 − 14. doi: 10.1007/s40964-018-0038-2

    [9]

    Zhenyu Fei, Zengxi Pan, Dominic Cuiuri, et al. Effect of heat input on weld formation and tensile properties in keyhole mode TIG welding process[J]. Metals, 2019, 9(12): 1 − 10.

    [10]

    ZuMing Liu, ShiYu Chen, Xin Yuan, et al. Magnetic-enhanced keyhole TIG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1−4): 275 − 285.

    [11] 罗震, 解龑, 崔霜林. 基于三维重构技术的K-TIG熔池流动表征[J]. 天津大学学报: 自然科学与工程技术版, 2018, 51(326): 79 − 83.

    Luo Zhen, Xie Yan, Cui Shuanglin. Morphology characterization of molten pool flow behavior during K-TIG welding based on 3D reconstruction techniques[J]. Journal of Tianjin University (Science and Technology), 2018, 51(326): 79 − 83.

    [12]

    Liu X, Wu X, Han E H. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water[J]. Electrochimica Acta, 2013, 108: 554 − 565. doi: 10.1016/j.electacta.2013.06.131

  • 期刊类型引用(3)

    1. 姜自昊,曾才有,杨清福,张权,齐铂金,从保强. 2219中厚铝合金VPTIG深熔焊接熔池行为与组织性能. 航天制造技术. 2024(03): 34-40+78 . 百度学术
    2. 王彦龙,曹旭武,丁正祥,闫德俊,彭卫华. 船用新型TA3钛合金深熔TIG焊接头组织与力学性能研究. 电焊机. 2024(12): 56-61 . 百度学术
    3. 唐君才,陈和,魏占静. 304不锈钢K-TIG焊接工艺. 机械制造文摘(焊接分册). 2022(03): 37-40 . 百度学术

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  52
  • PDF下载量:  36
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-10-14
  • 网络出版日期:  2021-10-24
  • 刊出日期:  2021-08-30

目录

/

返回文章
返回