高级检索

套娃式新型爆炸焊接法及试样焊接质量分析

张龄匀, 马宏昊, 沈兆武, 周国安

张龄匀, 马宏昊, 沈兆武, 周国安. 套娃式新型爆炸焊接法及试样焊接质量分析[J]. 焊接学报, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003
引用本文: 张龄匀, 马宏昊, 沈兆武, 周国安. 套娃式新型爆炸焊接法及试样焊接质量分析[J]. 焊接学报, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003
ZHANG Lingyun, MA Honghao, SHEN Zhaowu, ZHOU Guoan. Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003
Citation: ZHANG Lingyun, MA Honghao, SHEN Zhaowu, ZHOU Guoan. Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 1-6. DOI: 10.12073/j.hjxb.20201009003

套娃式新型爆炸焊接法及试样焊接质量分析

基金项目: 国家自然科学基金资助项目(11532010,11972263)
详细信息
    作者简介:

    张龄匀,硕士;主要从事金属材料显微结构及力学性能分析;Email:lzhangcm@connect.ust.hk

    通讯作者:

    周国安,博士;Email:guoanzh@mail.ustc.edu.cn.

  • 中图分类号: TG 456.6

Micro-structure and mechanical properties of explosively welded steel/Cu pipes and Al/Cu pipe/rod via the Russian-dolls-like experimental arrangement

  • 摘要: 采用套娃式新型爆炸焊接法一次试验高效制备出以Q235钢为基管、T2紫铜为覆管的Q235/T2复合管及以1060工业纯铝为覆管、T2紫铜为基棒的1060/T2复合棒各一件. 对试样结合界面的微观形貌及轴向压缩行为进行了测试与分析. 结果表明,受传爆装置产生的射流影响,1060/T2爆炸焊接棒顶端有一直径约3 mm的球形凹槽,距顶部约有8.5 mm区域焊接质量较差,其余部位焊接质量良好;Q235/1060爆炸焊接管未受此影响. 沿着爆轰波传播方向,Q235/T2复合管及1060/T2复合棒的结合界面均逐渐从不稳定波形结合过渡到规则的、幅值/宽度分别约为65 μm/210 μm、120 μm/400 μm的波形结合. EDS显示Q235/T2复合管结合界面处铁铜原子扩散比在44∶56 ~ 72∶28之间,1060/T2复合棒结合界面处有AlCu,Al2Cu生成;力学性能方面,轴向准静态压缩条件下,Q235/T2复合管、1060/T2复合棒的屈服应力/屈服应变分别约为598 MPa/5.8%和340 MPa/4.8%.
    Abstract: The steel-Q235/copper-T2 pipes and aluminum-1060/copper-T2 composite pipe/rod are fabricated by an unique manufacturing process which we call it “the Russian-dolls-like experimental arrangement”. After the experiment, samples’ welding quality along the detonation direction is firstly evaluated by an optical microscope and a scanning electron microscope equipped with a backscattered electrons detector. Mechanical properties of welded samples are checked via longitudinal compression tests. Results show that due to the jet produced by part no. 6, there is a ϕ 3.0 mm spherical groove on top of the Al/Cu explosively-welded rod. Because of this, the section 8.5 mm from the top (Al/Cu couple) is not welded, while the Steel/Cu couple is not affected. Bonding interfaces of Steel/Cu and Steel/Cu couples both change from unstable ones to regular/wavy ones along the detonation direction. Atomic ratios of steel and copper around the Steel/Cu interface varies from 44∶56 to 72∶28, and AlCu and Al2Cu are identified around the Al/Cu interface via EDS analysis. Samples’ yield strength/strain in longitudinal compression for steel/Cu and Al/Cu couples are 598 MPa/5.8% and 340 MPa/4.8%, respectively.
  • 图  1   试验前待焊接材料的微观形貌

    Figure  1.   Micro morphology of welded samples. (a) steel-Q235 (tube); (b) copper-T2 (tube); (c) aluminum-1060 (tube); (d) copper-T2 (rod)

    图  2   套娃式新型爆炸焊接试验布置

    Figure  2.   Russian-doll-like experimental arrangement. (a) before assembling; (b) after assembling; (c) Russian-doll-like layout

    图  3   传爆装置的布置及尺寸

    Figure  3.   Layout and detailed sizes of the experiment. (a) diagram of the detonation propagation; (b) parameters of the propagation parts

    图  4   套娃式爆炸焊接宏观形貌

    Figure  4.   Macroscopic welding results via the Russian-doll-like experimental arrangement. (a) right after the experiment; (b) cross-sectional profile; (c) RD-direction profile

    图  5   Q235/T2爆炸焊接管显微形貌及EDS分析

    Figure  5.   SEM images of explosive welding Q235/T2 tube and EDS analysis. (a) at beginning; (b) stable period; (c) occasionally unstable; (d) EDS analysis

    图  6   1060/T2爆炸焊接棒显微形貌及EDS分析

    Figure  6.   SEM images of explosive welding 1060/T2 rod and EDS analysis. (a) at beginning; (b) stable period; (c) EDS analysis

    图  7   Q235/T2爆炸焊接管轴向压缩试验结果

    Figure  7.   Longitudinal compression of Q235/T2 specimens and blank trails. (a) the stress-strain relationship; (b) compression test for the reference specimen; (c) after compression test for the reference specimen; (d) compression test for the welded specimen; (e) after compression test for the welded specimen

    图  8   1060/T2爆炸焊接棒轴向压缩试验结果

    Figure  8.   Longitudinal compression of 1060/T2 specimens and blank trails. (a) the stress-strain relationship; (b) 11.3% compression deformation; (c) 41.5% compression deformation; (d) after the compression test

    表  1   试样几何参数

    Table  1   Parameters of the chosen metals

    材料功能外径
    D/mm
    壁厚
    δ1/mm
    长度
    l/mm
    间隙
    δ2/mm
    Q235(管)基管839.51053
    T2(管)覆管6031053
    1060(管)覆管3021052
    T2(棒)基棒22111052
    下载: 导出CSV

    表  2   试样化学组分(质量分数,%)

    Table  2   Chemical component of steel-Q235, copper-T2 and aluminum-1060

    母材FeMgCMnSiSCuAl
    Q235(管)99.250.20.50.05
    T2(管)0.0050.00599.99
    1060(管)0.030.030.250.0599.64
    T2(棒)0.0050.00599.99
    下载: 导出CSV

    表  3   Q235/T2爆炸焊接管界面EDS分析

    Table  3   EDS analysis of the interface of the Q235/T2

    测试点元素质量分数w(%)原子分数a(%)
    × Fe 67.1 69.9
    Cu 32.9 30.1
    + Fe 72.2 74.7
    Cu 27.8 25.3
    Fe 44.1 47.2
    Cu 55.9 52.8
    $\nabla$ Fe 59.2 62.3
    Cu 40.8 37.7
    下载: 导出CSV

    表  4   1060/T2爆炸焊接棒界面EDS分析

    Table  4   EDS analysis of the interface of the 1060/T2

    测试点元素质量分数w(%)原子分数a(%)
    × Al 33.5 54.2
    Cu 66.5 45.8
    + Al 32.8 53.5
    Cu 67.2 46.5
    Al 34.6 55.5
    Cu 65.4 44.5
    $\nabla $ Al 33.5 54.3
    Cu 66.5 45.7
    下载: 导出CSV
  • [1]

    Aizawa Y, Nishiwaki J, Harada Y, et al. Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces[J]. Journal of Manufacturing Processes, 2016, 24: 100 − 106. doi: 10.1016/j.jmapro.2016.08.002

    [2]

    Zhou G A, Ma H H, Shen Z W, et al. Application of a new cleaner emulsion-explosive formula: Cu/Al parallel plates explosive welding[J]. Propellants Explosives Pyrotechnics, 2018, 43: 1041 − 1047. doi: 10.1002/prep.201800157

    [3]

    Bataev I, Bataev A, Mali V, et al. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing[J]. Materials & Design, 2012, 35: 225 − 234.

    [4] 周国安, 马宏昊, 沈兆武, 等. 正火处理对Cu/Al爆炸焊接板显微结构及力学性能的影响[J]. 焊接学报, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153

    Zhou Guoan, Ma Honghao, Shen Zhaowu, et al. Influence of normalizing on micro-structure and mechanical properties of Cu/Al explosive welded plate[J]. Transactions of the China Welding Institution, 2019, 40(6): 46 − 51. doi: 10.12073/j.hjxb.2019400153

    [5]

    Mendes R, Ribeiro J, Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration[J]. Materials & Design, 2013, 51: 182 − 192.

    [6]

    Shi C G, Sun Z R, Fang Z H, et al. Design and test of a protective structure for the double vertical explosive welding of large titanium/steel plate[J]. China Welding, 2019, 28(3): 7 − 14.

    [7]

    Xia H B, Wang S G, Ben H F. Microstructure and mechanical properties of Ti/Al explosive cladding[J]. Material & Design, 2014, 56: 1014 − 1019.

    [8]

    Akbari M, Farhadi S. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J]. Materials & Design, 2009, 30(3): 459 − 468.

    [9]

    Zhang T T, Wang W X, Zhang W, et al. Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding[J]. Journal of Alloys and Compounds, 2018, 735: 1759 − 1768. doi: 10.1016/j.jallcom.2017.11.285

    [10]

    Wei Y N, Luo Y G, Qu H T, et al. Microstructure evolution and failure analysis of an aluminum-copper cathode conductive head produced by explosive welding[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 6158 − 6166. doi: 10.1007/s11665-017-3055-2

    [11]

    Mali V I, Bataev A A, Maliutina I N, et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9−12): 4285 − 4294. doi: 10.1007/s00170-017-0887-8

    [12]

    Boronski D, Kotyk M, Mackowiak P, et al. Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions[J]. Materials & Design, 2017, 133: 390 − 403.

    [13] 缪广红, 艾九英, 马雷鸣, 等. 不锈钢/普碳钢双面爆炸复合的数值模拟[J]. 焊接学报, 2020, 41(8): 55 − 62. doi: 10.12073/j.hjxb.20200215001

    Miao Guanghong, Ai Jiuying, Ma Leiming, et al. Numerical simulation of double-sided explosive welding of stainless steel/ordinary carbon steel[J]. Transactions of the China Welding Institution, 2020, 41(8): 55 − 62. doi: 10.12073/j.hjxb.20200215001

    [14] 余勇, 马宏昊, 沈兆武, 等. 爆炸胀接铝/钢复合管的研究[J]. 高压物理学报, 2016, 30(2): 130 − 134. doi: 10.11858/gywlxb.2016.02.007

    Yu Yong, Ma Honghao, Shen Zhaowu, et al. Aluminum/steel composite pipe by explosion expansion[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 130 − 134. doi: 10.11858/gywlxb.2016.02.007

    [15]

    Hokamoto K, Shimomiya K, Nishi M, et al. Fabrication of unidirectional porous-structured aluminum through explosive compaction using cylindrical geometry[J]. Journal of Materials Processing Technology, 2018, 251: 262 − 266. doi: 10.1016/j.jmatprotec.2017.07.022

    [16] 周国安, 马宏昊, 沈兆武, 等. 以黏土颗粒为惰性剂的低爆速乳化炸药爆炸性能及爆轰机理[J]. 火炸药学报, 2018, 41(3): 289 − 293, 302.

    Zhou Guoan, Ma Honghao, Shen Zhaowu, et al. Detonation properties and mechanism of low detonation velocity emulsion explosives with clay particles as the inert agents[J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 289 − 293, 302.

  • 期刊类型引用(12)

    1. 崔锡杰,王晓军,李晓航. 改进RRT算法的机器人全局路径规划. 计算机工程与应用. 2025(04): 331-338 . 百度学术
    2. 张邦成,单玉升,赵航,董雷,尹晓静. 汽车白车身点焊作业多机器人路径规划研究. 组合机床与自动化加工技术. 2024(02): 51-56 . 百度学术
    3. 马佳玮,孙菁伯,迟关心,张广军,李鑫磊. 基于立体视觉和YOLO深度学习框架的焊缝识别与机器人路径规划算法. 焊接学报. 2024(11): 45-49 . 本站查看
    4. 李婧,李艳萍. 复杂多陷阱环境下机器人导航路径的蚁群规划策略. 机械设计与制造. 2023(08): 228-232 . 百度学术
    5. 刘环宇,王宇,赵柏栋,姚奉裕,李显,王德权. 基于改进蚁群算法的机械臂焊接路径规划. 组合机床与自动化加工技术. 2022(06): 28-30+35 . 百度学术
    6. 龚正,涂福泉,李圣伟. 基于改进狼群算法的焊接机器人路径规划. 传感器与微系统. 2022(12): 122-125 . 百度学术
    7. 裴跃翔,曹家勇,吕文壮,许海波,李娜. 嵌入筛选操作的遗传算法及其在焊接路径规划中的应用. 机械设计与研究. 2021(02): 109-113 . 百度学术
    8. 聂芬,赵志华. 基于改进果蝇算法的焊接机器人路径规划. 制造技术与机床. 2021(10): 21-25 . 百度学术
    9. 姚晓通,李致远,程晓. 基于改进蚁群算法的机器人路径规划研究. 计算机仿真. 2021(11): 379-383 . 百度学术
    10. 张丽珍,何龙,吴迪,杜战其. 改进型蚁群算法在路径规划中的研究. 制造业自动化. 2020(02): 55-59 . 百度学术
    11. 徐金雄,王涛,刘军,班勃. 基于双蚁群算法的双机器人路径规划方法. 机床与液压. 2020(23): 45-48 . 百度学术
    12. 吴泽亮. 基于蚁群算法的航线自动生成方法. 舰船科学技术. 2019(14): 43-45 . 百度学术

    其他类型引用(17)

图(8)  /  表(4)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  57
  • PDF下载量:  60
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-10-08
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回