高级检索

AZ31Mg/2A12Al爆炸复合板界面组织与性能

王小伟, 杨东青, 李晓鹏, 王磊, 王克鸿

王小伟, 杨东青, 李晓鹏, 王磊, 王克鸿. AZ31Mg/2A12Al爆炸复合板界面组织与性能[J]. 焊接学报, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
引用本文: 王小伟, 杨东青, 李晓鹏, 王磊, 王克鸿. AZ31Mg/2A12Al爆炸复合板界面组织与性能[J]. 焊接学报, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
WANG Xiaowei, YANG Dongqing, LI Xiaopeng, WANG Lei, WANG Kehong. Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001
Citation: WANG Xiaowei, YANG Dongqing, LI Xiaopeng, WANG Lei, WANG Kehong. Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 14-17. DOI: 10.12073/j.hjxb.20201009001

AZ31Mg/2A12Al爆炸复合板界面组织与性能

基金项目: 国家自然科学基金资助项目(51805266,51805265)
详细信息
    作者简介:

    王小伟,硕士研究生;主要从事电弧增材制造方面的研究;Email: 15290408287@163.com.

    通讯作者:

    杨东青,博士,讲师;Email: yangdq@njust.edu.cn.

  • 中图分类号: TG 456.6,TG 146.2

Microstructure and mechanical properties of AZ31Mg/2A12Al laminated composites interface fabricated by explosive welding

  • 摘要: 镁合金板上复合铝合金板对拓宽镁合金的使用范围具有重要意义. 采用爆炸焊接进行了镁合金板和铝合金板工艺试验,并制成镁合金和铝合金复合板. 使用光学显微镜、扫描电子显微镜观察焊后复合板结合界面处的微观形貌,分析了界面形成过程. 使用显微硬度计和剪切试验机测量了复合板结合界面处的硬度和抗剪强度. 结果表明,经爆炸焊接后,复合板界面熔化区发生了冶金结合,对应的组织为Al3Mg2和Al12Mg17金属间化合物的混合物. 熔化区域硬度为126 HV, 较基板硬度有明显升高(铝合金110 HV,镁合金70 HV). 结合界面处同一取样方向上,试件抗剪强度存在差异:x轴方向取样的剪切件强度呈现出先增加后减小的变化趋势,其平均值分别为112.3 MPa (垂直爆炸方向),87.0 MPa (平行爆炸方向);y轴方向取样的各剪切件强度基本相当,平均值分别为56.5 MPa (垂直爆炸方向),62.0 MPa (平行爆炸方向).
    Abstract: To compound aluminum alloy plate on the magnesium alloy plate is of great significance to broaden the application range of magnesium alloy. The compounding process test of magnesium alloy plate and aluminum alloy plate was carried out by explosive welding, and the magnesium alloy and aluminum alloy composite plate was fabricated by explosive welding. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe and study the micro-morphology of the bonding interface of the composite board, and the formation process of the interface was analyzed. The hardness and shear strength at the bonding interface of the composite board were measured using a microhardness tester and a shear test machine. The results showed that the melting zone of the composite plate interface fabricated by explosive welding occurred solidified melts, and the structure was a mixture of Al3Mg2 and Al12Mg17 intermetallic compounds. The hardness of the melting zone was 126 HV, which was significantly higher than the substrate hardness (Al alloy 110 HV, Mg alloy 70 HV). There were differences in the shear strength of the specimens in the same sampling direction: the shear strength of the specimens cut along X axis shown a trend of first increasing and then decreasing, and the average value of the shear strength were 112.3 MPa (vertical to the explosion direction) and 87.0 MPa (parallel to the explosion direction); The shear strength of the specimens in the Y-axis direction was basically equivalent, which the value of the shear strength in average were 56.5 MPa (vertical to the explosion direction) and 61.0 MPa (parallel to the explosion direction).
  • 图  1   爆炸装置示意图

    Figure  1.   Schematic of experimental set-up in explosive welding

    图  2   剪切样取样位置示意图 (mm)

    Figure  2.   Sampling position of the shear samples

    图  3   焊后复合板宏观形貌

    Figure  3.   Macrograph of explosively welded composite plate

    图  4   爆炸焊复合板结合界面处组织

    Figure  4.   Bonding interface image on the cross sections of the Al / Mg explosive-bonded joint. (a) low magnification structure of composite board interface; (b) high magnification structure of composite board interface

    图  5   铝/镁接合界面的EDS检测

    Figure  5.   EDS of Al/Mg joint interface. (a) EDS point scan; (b) EDS line scan

    图  6   复合板界面硬度测试结果

    Figure  6.   Micro-hardness on the Al/Mg joint interface

    图  7   剪切试样断口SEM图

    Figure  7.   SEM diagram of fracture surface of the shear test specimen. (a) fracture surface of x-axis sampling; (b) fracture surface of y-axis sampling

    表  1   2A12铝合金与AZ31镁合金化学成分(质量分数,%)

    Table  1   Chemical component of wire and substrate

    材料AlSiFeCuMnMgNiTi
    2A12余量0.500.4040.501. 50. 100.15
    AZ313.020.100.050.63余量
    下载: 导出CSV

    表  2   复合板剪切试验结果

    Table  2   Shear test results of composite panels

    试样编号抗剪强度Rm/MPa抗剪强度均值R’m/MPa
    垂直爆炸
    方向(x轴)
    190.5
    3135.0112.3
    5111.6
    平行爆炸
    方向(x轴)
    297.6
    4100.987.0
    662.6
    垂直爆炸
    方向(y轴)
    A56.4
    C45.656.5
    E67.4
    平行爆炸
    方向(y轴)
    B51.7
    D99.662.0
    F34.6
    下载: 导出CSV
  • [1] 张文毓. 耐蚀镁合金研究现状与应用进展[J]. 全面腐蚀控制, 2019, 33(1): 6 − 10.

    Zhang Wenyu. The research present situation and application progress of corrosion resistant magnesium alloy[J]. Total Corrosion Control, 2019, 33(1): 6 − 10.

    [2]

    Sato Y S, Park S H C, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys[J]. Scripta Materialia, 2004, 50(9): 1233 − 1236. doi: 10.1016/j.scriptamat.2004.02.002

    [3]

    Zeng X Y, Wang Y X, Li X Q, et al. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate[J]. Journal of Manufacturing Processes, 2019, 45 (7): 166 − 175.

    [4] 房中行, 史长根, 冯柯, 等. TA2-1060-TA2复合板爆炸焊接试验及性能测试[J]. 焊接学报, 2019, 40(9): 93 − 98.

    Fang Zhongxing, Shi Changgen, Feng Ke, et al. Explosive welding experiment and property test of TA2-1060-TA2 cladding plate[J]. Transactions of the China Welding Institution, 2019, 40(9): 93 − 98.

    [5]

    Yang Ming, Ma Honghao, Shen Zhaowu, et al. Study on explosive welding for manufacturing meshing bonding interface of CuCrZr to 316L stainless steel[J]. Fusion Engineering and Design, 2019, 143: 106 − 114. doi: 10.1016/j.fusengdes.2019.03.137

    [6] 曾翔宇, 李晓杰, 王小红, 等. 爆炸焊接波状界面的形成和发展[J]. 稀有金属材料与工程, 2020, 49(6): 1977 − 1983.

    Zeng Xiangyu, Li Xiaojie, Wang Xiaohong, et al. Formation and development of explosive welding wave interface[J]. Rare Metal Materials and Engineering, 2020, 49(6): 1977 − 1983.

    [7]

    Henryk Pual, Lukasz Maj, Mariusz Prazmowski, et al. Microstructure and mechanical properties of multi-layered Al/Ti composites produced by explosive welding[J]. Procedia Manufacturing, 2018, 15: 1391 − 1398. doi: 10.1016/j.promfg.2018.07.343

    [8] 史倩茹, 吴伟刚, 丁旭, 等. AZ31Mg/5052Al爆炸复合板的组织与力学性能研究[J]. 热加工工艺, 2018, 47(18): 93 − 95.

    Shi Qianru, Wu Weigang, Ding Xu, et al. Study on microstructure and mechanical properties of AZ31Mg/5052Al explosive composite plate[J]. Hot Working Technology, 2018, 47(18): 93 − 95.

    [9]

    Gladkovsky S V, Kuteneva S V, Sergeev S N, et al. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding[J]. Materials Characterization, 2019, 154: 294 − 303. doi: 10.1016/j.matchar.2019.06.008

  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(2)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  64
  • PDF下载量:  49
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-10-08
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回