高级检索

焊缝金属中针状铁素体晶粒长大行为

宋峰雨, 周来宏, 伦文山, 黄增阳, 柏祥洋

宋峰雨, 周来宏, 伦文山, 黄增阳, 柏祥洋. 焊缝金属中针状铁素体晶粒长大行为[J]. 焊接学报, 2021, 42(5): 23-28. DOI: 10.12073/j.hjxb.20200929003
引用本文: 宋峰雨, 周来宏, 伦文山, 黄增阳, 柏祥洋. 焊缝金属中针状铁素体晶粒长大行为[J]. 焊接学报, 2021, 42(5): 23-28. DOI: 10.12073/j.hjxb.20200929003
SONG Fengyu, ZHOU Laihong, LUN Wenshan, HUANG Zengyang, BO Xiangyang. Study on grain growth behavior of acicular ferrite in weld deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 23-28. DOI: 10.12073/j.hjxb.20200929003
Citation: SONG Fengyu, ZHOU Laihong, LUN Wenshan, HUANG Zengyang, BO Xiangyang. Study on grain growth behavior of acicular ferrite in weld deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 23-28. DOI: 10.12073/j.hjxb.20200929003

焊缝金属中针状铁素体晶粒长大行为

基金项目: 国家自然科学基金资助项目(51801022);江西省教育厅科技项目(GJJ191047);龙岩学院青年博士科研启动基金资助项目(LB201810).
详细信息
    作者简介:

    宋峰雨,博士,副教授;主要从事钢铁焊接性研究和焊接材料开发工作;Email:song_feng_yu@126.com.

    通讯作者:

    周来宏,博士,讲师;Email:lai_h@126.com.

  • 中图分类号: TG 422.3

Study on grain growth behavior of acicular ferrite in weld deposited metal

  • 摘要: 以针状铁素体(AF)组织为基体组织的大热输入焊缝金属作为研究对象,采用金相显微镜(OM)、扫描电子显微镜电子背散射衍射装置(EBSD)、全自动静态相变仪等手段表征了焊缝金属内细长状的针状铁素体(AF)组织晶粒的取向特征,分析不同焊接热输入对焊缝金属内AF晶粒形核以及长大行为的影响规律. 结果表明,在大热输入焊接条件下,当焊缝金属的冷却速度低于临界冷却速度时,AF晶粒以多边形铁素体形态从夹杂物边缘开始形核时,此刻与母相奥氏体(γ)间偏离K-S关系,当焊缝金属温度降低至相变开始温度后,AF晶粒以细长的针状开始长大,并且与母相奥氏体间满足K-S关系. 但是随着焊接热输入降低,冷却速度逐步的加快,AF晶粒形核尺寸将越来越小,并且向着与母相奥氏体满足K-S关系的取向偏转速度加快,当焊缝金属的冷却速度超过临界冷却速度时,AF晶粒不用形核就可以迅速长大.
    Abstract: In this study, having acicular ferrite (AF) as the matrix the high heat input weld metal was taken as the research object and acicular ferrite (AF) grain orientation relationships (ORs) in the deposited metal was identified from Metallographic microscope (OM), electron bacK-Scatter diffraction device (EBSD), automatic static phase change instrument, etc, the influence of different heat input on the growth behavior of AF grain in the weld metal was analyzed. The results showed that, When the cooling rate of the weld metal is below the critical rate, AF in the weld metal nucleated from the inclusions with polygonal ferrite morphology, and deviated from K-S OR with respect to parent phase γ. When the temperature of the deposited metal decreased to the transformation start temperature, AF grew up with slender needle morphology, and exhibited K-S OR with respect to parent phase γ. However, with the decrease of the welding heat input, AF nuclear size reduced, and the approach to K-S OR with respect to parent phase γ was accelerated, when the cooling rate of the weld metal exceeds the critical rate, AF grains can grow rapidly without nucleation.
  • 搅拌摩擦焊(friction stir welding, FSW)作为一种固相焊接技术,具有焊缝质量高、变形小等优点[1-2]. 目前加工制造业对焊接智能化、高效化的要求日益上升,机器人搅拌摩擦焊得以更普遍的应用.在实际大型结构的FSW生产中,由于接头形式、板材加工精度以及工装夹具装配质量问题,焊接过程容易产生较大的间隙,对接头的成形和性能极为不利[3-4],当工件之间的间隙超过工件厚度的10%时,很难获得无缺陷质量良好的接头[5]. 间隙的存在导致焊核区(weld nugget zone,WNZ)材料流动不充分,焊缝出现孔洞和隧道等缺陷[6]. 同时,工件被塑化的材料流入间隙,弥补材料缺失使得焊缝位置减薄严重,降低接头承载能力[7].

    研究人员[8-9]采用粉末、焊丝或者补偿条作为填充材料对大间隙下的工件进行FSW,得到成形良好无缺陷的接头,接头与常规FSW接头力学性能吻合,然而,当焊接速度过快时,这些填充材料很容易飞出间隙,从而形成缺陷. 同时填充材料需要在焊前放置在间隙内,针对复杂结构间隙及焊接过程中产生的间隙,填充材料的尺寸以及填料的连续性受到限制.

    基于传统搅拌摩擦焊方法,填充材料旁轴送料,将FSW与填料过程同时进行,实现大间隙机器人搅拌摩擦填丝焊,并对其接头进行盐雾腐蚀试验,分析搅拌摩擦填丝焊接头不同区域的腐蚀行为差异.搅拌摩擦填丝焊提高了FSW对工况条件的适应性,适用于高铁、船舶和飞机上大型及复杂结构焊缝,有望为工程实际应用提供理论依据和技术支撑.

    试验材料为5A06铝合金轧制板材,尺寸为300 mm × 70 mm × 3 mm,填充材料为直径1.6 mm的5B06丝材. 机器人搅拌摩擦填丝焊焊接过程示意图及焊具尺寸如图1所示,对接板材焊接间隙为2 mm. 填充丝材经过高推力送丝系统从送丝孔连续输送到储料腔内部,高速旋转的螺杆将金属丝材剪切成粒状材料,粒状材料在自身重力及与螺杆侧壁的摩擦力的影响下,在储料腔内塑化从底部的缝隙流出. 轴向压力使储料腔与板材之间产生挤压效果,粒状材料发生变形堆积并被塑化. 在旋转的搅拌针的驱动作用下,塑化的填充材料发生流动并实现与基材的连接. 试验所采用的焊接工艺参数为转速3 000 r/min,焊接速度200 mm/min,送丝速度1.8 m/min,轴向压力5 000 N,倾角1.5°.

    图  1  焊接过程示意图及焊具结构
    Figure  1.  Welding process and the welding tool structure. (a) schematic illustration of wire-feeding friction stir welding; (b) dimensions of the welding tool

    图2为机器人搅拌摩擦填丝焊接头焊缝表面形貌. 焊缝表面光滑成形良好,无沟槽缺陷,在搅拌针的驱动作用下,塑化的填充材料发生流动后沉积弥补了间隙位置材料缺失,同时焊缝有一定程度的增厚,提高了接头的承载能力.

    图  2  焊缝表面形貌
    Figure  2.  Surface morphologies of the welds

    图3为焊缝整体微观形貌及不同区域的微观组织. 焊接接头填充材料与基体母材结合良好,焊缝无孔洞及隧道缺陷,由于搅拌针的存在,搅拌针促进塑化的丝材和基材发生流动,提高了填充材料与基材的结合效果. 丝材经过螺杆的剪切及静轴肩的挤压作用,与焊核区受到搅拌针的搅拌作用一样,填充材料也经历了大塑性变形,发生动态再结晶,形成细小的等轴晶.

    图  3  搅拌摩擦填丝焊接头微观组织
    Figure  3.  Microstructures of wire-feeding friction stir welding. (a) microstructures of the cross-section; (b) top interface; (c) thermo-mechanically affected zone interface; (d) filler materials zone

    搅拌摩擦填丝焊接头经过7天盐雾腐蚀试验后接头各区域腐蚀形貌如图4所示. 接头表面均发生了点蚀坑的萌生, 表面出现腐蚀产物;焊核区及填充材料区域的点蚀坑尺寸较小,且分布较为均匀;母材点蚀坑分布不均匀,尺寸较大.热力影响区(thermo- mechanically affected zone,TMAZ)的点蚀坑随晶粒分布特征呈流线分布,热影响区(heat-affected zone,HAZ)的点蚀坑尺寸较大,且出现一定的聚集现象,点蚀坑发生扩展.焊核区和填充材料区表现出更好的耐腐蚀性能.

    图  4  不同区域盐雾腐蚀形貌
    Figure  4.  Salt spray corrosion morphologies in different zones. (a) WNZ; (b) filler materials zone; (c)TMAZ; (d) HAZ; (e)BM

    第二相分布及尺寸对点蚀坑的形成有巨大影响,第二相和基体之间形成微电偶会导致腐蚀现象发生.焊核区经过塑性变形后第二相颗粒被打碎,尺寸较小分布也更均匀,进而发生腐蚀现象后点蚀坑分布均匀细小;填充材料区域拥有更小且弥散分布的第二相颗粒,填充材料的加入增强了焊核区的耐蚀性.经过轧制后的母材中第二相颗粒尺寸较大且分布不均匀,耐蚀性较差易形成较大的点蚀坑;热力影响区点蚀坑呈流线分布,而热影响区第二相颗粒发生聚集长大,发生点蚀后有利于点蚀坑的扩展,导致热影响区的耐蚀性较差.

    图5为热影响区点蚀坑SEM图及附近元素分布.发现在第二相Al6(FeMn)附近产生了明显的腐蚀现象, 点蚀坑发生扩展. 在盐雾环境中,铝合金表面虽然存在一层氧化膜,但是随着溶液中Cl的侵入,Cl破坏了表面氧化膜,促进点蚀现象发生. 同时热影响区第二相颗粒Al6(FeMn)与铝基体之间存在腐蚀电位差形成原电池,由于Al6(FeMn)电位高于铝基体[10],第二相颗粒在腐蚀过程中充当阴极,促使周围基体发生腐蚀,因此在第二相附近形成环形腐蚀区域产生腐蚀坑并向四周扩展. 当第二相尺寸较大时,周围基体溶解的范围增大,点蚀坑的尺寸也会更大. 基于元素分布图可以看出,在腐蚀坑附近Al元素含量减少,点蚀坑内金属发生溶解,点蚀孔内阳离子浓度升高,Cl就会不断侵入以维持平衡.随着Cl浓度的升高发生水解,导致点蚀坑内部氢离子浓度升高,溶液酸化,促使基体进一步溶解,点蚀坑发生扩展.

    图  5  热影响区腐蚀产物及元素分布
    Figure  5.  Corrosion products and element distribution of HAZ

    图6为经过7天盐雾腐蚀接头、未腐蚀接头及母材的拉伸测试结果.未腐蚀接头抗拉强度为388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 经过7天盐雾腐蚀后接头抗拉强度降低到356.6 MPa ± 1.2 MPa,断后伸长率为18.1% ± 0.9%,盐雾腐蚀后接头强度降低了8.3%,断后伸长率下降了11.7%,盐雾腐蚀试验后接头仍保持较优的力学性能. 盐雾腐蚀环境造成焊缝表面出现点蚀坑,而富Cl环境使基体金属进一步溶解,点蚀坑发生扩展,减少了接头有效承载面积,在承受载荷时其易成为薄弱位置,裂纹在点蚀坑位置产生,降低了接头承载能力.

    图  6  焊接接头抗拉强度及断后伸长率
    Figure  6.  Ultimate tensile strength and elongation of joints

    (1) 实现了大尺寸间隙下机器人搅拌摩擦填丝焊,焊接过程与填料过程同时进行,提高了搅拌摩擦焊对接头间隙的容忍性,消除了焊缝减薄问题.

    (2) 填充材料与基材实现了良好的冶金连接,经过剧烈塑性变形后,焊核区和填充材料发生动态再结晶,表现为细小的等轴晶粒.

    (3) 未腐蚀接头抗拉强度达到388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 在腐蚀过程中焊核区和填充材料区耐腐蚀性能优于热影响区与母材,点蚀坑细小且均匀分布,7天盐雾腐蚀后接头保持优异的耐蚀性能.

  • 图  1   不同热输入焊接条件下的焊缝金属OM

    Figure  1.   Microstructures of weld metal with high heat input welding. (a) 425 kJ/cm; (b) 205 kJ/cm; (c) 85 kJ/cm

    图  2   热输入425 kJ/cm焊缝金属EBSD图

    Figure  2.   EBSD analysis in weld metal of heat input with 425 kJ/cm. (a) ferrite IPF map; (b) misorientation measured toward the direction of arrow 1; (c) phase distribution diagram of fcc and bcc structure; (d) orientayion relationships between the start point of arrow 1 and prior austenite; (e) orientayion relationships between the terminal point of arrow 1 and prior austenite

    图  3   热输入205 kJ/cm焊缝金属EBSD图

    Figure  3.   EBSD analysis in weld metal of heat input with 205 kJ/cm. (a) ferrite IPF map; (b) orientayion relationships between the start point of arrow and prior austenite; (c) orientayion relationships between the terminal point of arrow and prior austenite; (d) misorientation measured toward the direction of arrow

    图  4   85 kJ/cm焊缝金属EBSD图

    Figure  4.   EBSD analysis in weld metal with heat input 85 kJ/cm. (a) ferrite IPF map; (b) misorientation measured toward the direction of arrow

    图  5   热输入对AF形核尺寸影响

    Figure  5.   Effect of heat input on nucleation size of AF

    图  6   AF长大示意图

    Figure  6.   Sketch map of AF growth. (a) 425 kJ/cm; (b) 205 kJ/cm; (c) 85 kJ/cm

    表  1   气电立焊工艺参数

    Table  1   Process parameters of gas-electric vertical welding

    热输入
    E/(kJ·cm−1)
    焊接电流
    I/A
    焊接电压
    U/V
    焊接速度
    v /(mm·s−1)
    4255984538
    2053703538
    853303070
    下载: 导出CSV

    表  2   焊缝金属的化学成分 (质量分数,%)

    Table  2   Chemical composition of weld metal

    CSiMnAlSBOTiFe
    0.08 0.32 1.93 0.40 0.017 0.008 0.061 0.092 余量
    0.08 0.30 1.85 0.41 0.017 0.008 0.060 0.080 余量
    0.09 0.26 1.80 0.40 0.017 0.008 0.065 0.082 余量
    下载: 导出CSV

    表  3   焊缝金属的冷却时间和冷却速度

    Table  3   Cooling time and cooling speed of weld metal

    热输入
    E/(kJ·cm−1)
    冷却时间
    t8/5/s
    冷却速度
    v1/(℃·s−1)
    425164.31.82
    20579.263.78
    8528.4810.53
    下载: 导出CSV
  • [1]

    Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding[J]. Journal of Iron and Steel Research International, 2018, 25(4): 433 − 441. doi: 10.1007/s42243-018-0054-y

    [2]

    Gadallah R, Osawa N, Tanaka S, et al. Critical investigation on the influence of welding heat input and welding residual stress on stress intensity factor and fatigue crack propagation[J]. Engineering Failure Analysis, 2018, 89: 200 − 221. doi: 10.1016/j.engfailanal.2018.02.028

    [3]

    Li Z X, Liu C M, Xu T Q, et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy[J]. Materials Science & Engineering, 2019, 742: 287 − 294.

    [4]

    Zhang H, Xue P, Wang D, et al. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. Journal of Materials Science & Technology, 2019, 35(7): 1278 − 1283.

    [5] 巴凌志, 王东坡, 张智, 等. 热输入对海工用钢不同合金系焊缝金属韧性的影响[J]. 焊接学报, 2020, 41(6): 42 − 47. doi: 10.12073/j.hjxb.20190623002

    Ba Lingzhi, Wang Dongpo, Zhang Zhi, et al. Effect of welding heat input on toughness of different alloys weld metal in ocean engineering steel[J]. Transactions of the China Welding Institution, 2020, 41(6): 42 − 47. doi: 10.12073/j.hjxb.20190623002

    [6] 刘政军, 武丹, 苏允海. B元素对药芯焊丝焊缝金属针状铁素体形成的影响[J]. 焊接学报, 2018, 39(12): 19 − 24. doi: 10.12073/j.hjxb.2018390291

    Liu Zhengjun, Wu Dan, Su Yunhai. Effect of boron element on formation of acicular ferrite in weld metal with flux cored wire[J]. Transactions of the China Welding Institution, 2018, 39(12): 19 − 24. doi: 10.12073/j.hjxb.2018390291

    [7]

    Yu S F, Dai Y L, Yan N. Inclusion behavior and microstructure of weld metal with Ce in twin wire high heat input submerged-arc welding[J]. China Welding, 2017, 26(1): 33 − 40.

    [8]

    Wu S W, Zhang C J, Zhu L G, et al. In-depth analysis of intragranular acicular ferrite three-dimensional morphology[J]. Scripta Materialia, 2020, 185: 61 − 65. doi: 10.1016/j.scriptamat.2020.03.007

    [9]

    Shao Y, Liu C X, Yan Z S, et al. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review[J]. Journal of Materials Science & Technology, 2018, 34(5): 3 − 10.

    [10]

    Yang Y K, Zhan D P, Lei H, et al. In situ observation of acicular ferrite nucleation and growth at different cooling rate in Ti-Zr deoxidized steel[J]. Metallurgical and Materials Transactions, 2019, 50(6): 2536 − 2546. doi: 10.1007/s11663-019-01668-z

    [11]

    Takada A, Komizo Y, Terasaki H, et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals[J]. Quarterly Journal of the Japan Welding Society, 2013, 31(1): 33 − 40. doi: 10.2207/qjjws.31.33

    [12] 宋峰雨, 李艳梅, 王平, 等. 热输入对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响[J]. 金属学报, 2016, 52(7): 890 − 896.

    Song Fengyu, Li Yanmei, Wang Ping, et al. Effects of heat input on the microstruc-ture and impact toughness of weld metal processed by a new flux cored wire weld[J]. Acta Metallurgica Sinica, 2016, 52(7): 890 − 896.

    [13] 汪建华. 熔合区t8/5的计算和焊接参数的选择[J]. 造船技术, 1988, 11: 30 − 33.

    Wang Jianhua. The calculation of t8/5 for fusion zone and the selection of welding parameter[J]. Marine Technology, 1988, 11: 30 − 33.

图(6)  /  表(3)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  34
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 网络出版日期:  2021-07-04
  • 刊出日期:  2021-04-30

目录

/

返回文章
返回