高级检索

分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能

李华晨, 周广涛, 陈梅峰, 刘雪松, 崔贺鹏, 杨浩

李华晨, 周广涛, 陈梅峰, 刘雪松, 崔贺鹏, 杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能[J]. 焊接学报, 2020, 41(10): 65-72. DOI: 10.12073/j.hjxb.20200911001
引用本文: 李华晨, 周广涛, 陈梅峰, 刘雪松, 崔贺鹏, 杨浩. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能[J]. 焊接学报, 2020, 41(10): 65-72. DOI: 10.12073/j.hjxb.20200911001
LI Huachen, ZHOU Guangtao, CHEN Meifeng, LIU Xuesong, CUI Hepeng, YANG Hao. Research on laser welding formability and microstructure property of copper in stepwise gas medium[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 65-72. DOI: 10.12073/j.hjxb.20200911001
Citation: LI Huachen, ZHOU Guangtao, CHEN Meifeng, LIU Xuesong, CUI Hepeng, YANG Hao. Research on laser welding formability and microstructure property of copper in stepwise gas medium[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 65-72. DOI: 10.12073/j.hjxb.20200911001

分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能

基金项目: 先进焊接与连接国家重点实验室开放课题(AWJ-16-M11);华侨大学研究生科研创新基金资助项目.
详细信息
    作者简介:

    李华晨,1996年出生,硕士; 主要从事焊接变形及控制方面的研究;Email:lihuachen23@163.com.

    通讯作者:

    周广涛,博士,副教授;Email:zhouguangtao@hqu.edu.cn.

  • 中图分类号: TG 456.7

Research on laser welding formability and microstructure property of copper in stepwise gas medium

  • 摘要: 针对紫铜高反射率给激光焊接带来的困难及不利影响,提出了一种分步气体介质下低功率薄板紫铜激光焊接方法,即对紫铜表面在氧气介质下进行黑化处理,在待焊件表面形成氧化膜,改变材料表面的粗糙度,促使激光能量多次被重复吸收,提高紫铜对激光的吸收率. 对不同氧气流量下的最终焊缝成形、宏观形貌、熔深和熔宽及力学性能进行对比分析,并探究其作用机理. 结果表明,当氧气流量Q ≤ 8 L/min时,随着氧气流量的增大,熔深和熔宽随之增大,当氧气流量为8 L/min时,紫铜板完全被焊透,且焊缝成形良好;黑化层的主要成分为氧化铜,焊缝区的黑化层总体厚度为470 μm,黑化程度从焊缝区沿着母材方向逐渐减弱;焊缝区和热影响区的显微组织由无方向性的α固溶体组成,焊缝中心两侧组织为垂直于熔合线方向生长的柱状晶;焊缝中心硬度较常规焊有显著提高且抗拉强度良好,证明了采用分步气体保护法可以有效的提高紫铜对激光能量的吸收,且分布气体介质条件下不会导致紫铜激光焊接接头力学性能下降.
    Abstract: In view of the difficulties and adverse effects of high reflectivity of copper on laser welding, a copper laser welding method based on stepwise gas medium is proposed. The surface of copper was blackened, the oxide film was formed on the surface of the welded parts, the roughness of the material surface was changed, the laser energy was repeatedly absorbed, and the absorption rate of the laser welding of copper was improved. The final weld formation, macro-morphology, depth of fusion, weld width and mechanical property under different oxygen flow rates were compared, and the mechanism of the method was explored. The results show that when Q ≤ 8 L/min, the penetration and width increase with the increase of oxygen flow rate. When Q = 8 L/min, the copper sheet is fully welded and weld is well formed. The main component of the blackened layer is copper oxide, the overall thickness of the blackened layer in the weld zone is 470 μm, and the blackening degree gradually decreases along direction of the base metal from the weld center. The microstructure of the weld and the heat-affected zone is composed of non-directional α solid solution, and the sides of the weld center are columnar crystals grown along the horizontal direction. Compared with conventional welding, the hardness of weld center is significantly improved and the tensile strength is well, which proves that the stepwise gas protection method can effectively improve the absorption of laser energy of copper and will not cause the mechanical properties of copper laser welded joints to decline under the condition of stepwise gas medium.
  • 搅拌摩擦焊(friction stir welding, FSW)作为一种固相焊接技术,具有焊缝质量高、变形小等优点[1-2]. 目前加工制造业对焊接智能化、高效化的要求日益上升,机器人搅拌摩擦焊得以更普遍的应用.在实际大型结构的FSW生产中,由于接头形式、板材加工精度以及工装夹具装配质量问题,焊接过程容易产生较大的间隙,对接头的成形和性能极为不利[3-4],当工件之间的间隙超过工件厚度的10%时,很难获得无缺陷质量良好的接头[5]. 间隙的存在导致焊核区(weld nugget zone,WNZ)材料流动不充分,焊缝出现孔洞和隧道等缺陷[6]. 同时,工件被塑化的材料流入间隙,弥补材料缺失使得焊缝位置减薄严重,降低接头承载能力[7].

    研究人员[8-9]采用粉末、焊丝或者补偿条作为填充材料对大间隙下的工件进行FSW,得到成形良好无缺陷的接头,接头与常规FSW接头力学性能吻合,然而,当焊接速度过快时,这些填充材料很容易飞出间隙,从而形成缺陷. 同时填充材料需要在焊前放置在间隙内,针对复杂结构间隙及焊接过程中产生的间隙,填充材料的尺寸以及填料的连续性受到限制.

    基于传统搅拌摩擦焊方法,填充材料旁轴送料,将FSW与填料过程同时进行,实现大间隙机器人搅拌摩擦填丝焊,并对其接头进行盐雾腐蚀试验,分析搅拌摩擦填丝焊接头不同区域的腐蚀行为差异.搅拌摩擦填丝焊提高了FSW对工况条件的适应性,适用于高铁、船舶和飞机上大型及复杂结构焊缝,有望为工程实际应用提供理论依据和技术支撑.

    试验材料为5A06铝合金轧制板材,尺寸为300 mm × 70 mm × 3 mm,填充材料为直径1.6 mm的5B06丝材. 机器人搅拌摩擦填丝焊焊接过程示意图及焊具尺寸如图1所示,对接板材焊接间隙为2 mm. 填充丝材经过高推力送丝系统从送丝孔连续输送到储料腔内部,高速旋转的螺杆将金属丝材剪切成粒状材料,粒状材料在自身重力及与螺杆侧壁的摩擦力的影响下,在储料腔内塑化从底部的缝隙流出. 轴向压力使储料腔与板材之间产生挤压效果,粒状材料发生变形堆积并被塑化. 在旋转的搅拌针的驱动作用下,塑化的填充材料发生流动并实现与基材的连接. 试验所采用的焊接工艺参数为转速3 000 r/min,焊接速度200 mm/min,送丝速度1.8 m/min,轴向压力5 000 N,倾角1.5°.

    图  1  焊接过程示意图及焊具结构
    Figure  1.  Welding process and the welding tool structure. (a) schematic illustration of wire-feeding friction stir welding; (b) dimensions of the welding tool

    图2为机器人搅拌摩擦填丝焊接头焊缝表面形貌. 焊缝表面光滑成形良好,无沟槽缺陷,在搅拌针的驱动作用下,塑化的填充材料发生流动后沉积弥补了间隙位置材料缺失,同时焊缝有一定程度的增厚,提高了接头的承载能力.

    图  2  焊缝表面形貌
    Figure  2.  Surface morphologies of the welds

    图3为焊缝整体微观形貌及不同区域的微观组织. 焊接接头填充材料与基体母材结合良好,焊缝无孔洞及隧道缺陷,由于搅拌针的存在,搅拌针促进塑化的丝材和基材发生流动,提高了填充材料与基材的结合效果. 丝材经过螺杆的剪切及静轴肩的挤压作用,与焊核区受到搅拌针的搅拌作用一样,填充材料也经历了大塑性变形,发生动态再结晶,形成细小的等轴晶.

    图  3  搅拌摩擦填丝焊接头微观组织
    Figure  3.  Microstructures of wire-feeding friction stir welding. (a) microstructures of the cross-section; (b) top interface; (c) thermo-mechanically affected zone interface; (d) filler materials zone

    搅拌摩擦填丝焊接头经过7天盐雾腐蚀试验后接头各区域腐蚀形貌如图4所示. 接头表面均发生了点蚀坑的萌生, 表面出现腐蚀产物;焊核区及填充材料区域的点蚀坑尺寸较小,且分布较为均匀;母材点蚀坑分布不均匀,尺寸较大.热力影响区(thermo- mechanically affected zone,TMAZ)的点蚀坑随晶粒分布特征呈流线分布,热影响区(heat-affected zone,HAZ)的点蚀坑尺寸较大,且出现一定的聚集现象,点蚀坑发生扩展.焊核区和填充材料区表现出更好的耐腐蚀性能.

    图  4  不同区域盐雾腐蚀形貌
    Figure  4.  Salt spray corrosion morphologies in different zones. (a) WNZ; (b) filler materials zone; (c)TMAZ; (d) HAZ; (e)BM

    第二相分布及尺寸对点蚀坑的形成有巨大影响,第二相和基体之间形成微电偶会导致腐蚀现象发生.焊核区经过塑性变形后第二相颗粒被打碎,尺寸较小分布也更均匀,进而发生腐蚀现象后点蚀坑分布均匀细小;填充材料区域拥有更小且弥散分布的第二相颗粒,填充材料的加入增强了焊核区的耐蚀性.经过轧制后的母材中第二相颗粒尺寸较大且分布不均匀,耐蚀性较差易形成较大的点蚀坑;热力影响区点蚀坑呈流线分布,而热影响区第二相颗粒发生聚集长大,发生点蚀后有利于点蚀坑的扩展,导致热影响区的耐蚀性较差.

    图5为热影响区点蚀坑SEM图及附近元素分布.发现在第二相Al6(FeMn)附近产生了明显的腐蚀现象, 点蚀坑发生扩展. 在盐雾环境中,铝合金表面虽然存在一层氧化膜,但是随着溶液中Cl的侵入,Cl破坏了表面氧化膜,促进点蚀现象发生. 同时热影响区第二相颗粒Al6(FeMn)与铝基体之间存在腐蚀电位差形成原电池,由于Al6(FeMn)电位高于铝基体[10],第二相颗粒在腐蚀过程中充当阴极,促使周围基体发生腐蚀,因此在第二相附近形成环形腐蚀区域产生腐蚀坑并向四周扩展. 当第二相尺寸较大时,周围基体溶解的范围增大,点蚀坑的尺寸也会更大. 基于元素分布图可以看出,在腐蚀坑附近Al元素含量减少,点蚀坑内金属发生溶解,点蚀孔内阳离子浓度升高,Cl就会不断侵入以维持平衡.随着Cl浓度的升高发生水解,导致点蚀坑内部氢离子浓度升高,溶液酸化,促使基体进一步溶解,点蚀坑发生扩展.

    图  5  热影响区腐蚀产物及元素分布
    Figure  5.  Corrosion products and element distribution of HAZ

    图6为经过7天盐雾腐蚀接头、未腐蚀接头及母材的拉伸测试结果.未腐蚀接头抗拉强度为388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 经过7天盐雾腐蚀后接头抗拉强度降低到356.6 MPa ± 1.2 MPa,断后伸长率为18.1% ± 0.9%,盐雾腐蚀后接头强度降低了8.3%,断后伸长率下降了11.7%,盐雾腐蚀试验后接头仍保持较优的力学性能. 盐雾腐蚀环境造成焊缝表面出现点蚀坑,而富Cl环境使基体金属进一步溶解,点蚀坑发生扩展,减少了接头有效承载面积,在承受载荷时其易成为薄弱位置,裂纹在点蚀坑位置产生,降低了接头承载能力.

    图  6  焊接接头抗拉强度及断后伸长率
    Figure  6.  Ultimate tensile strength and elongation of joints

    (1) 实现了大尺寸间隙下机器人搅拌摩擦填丝焊,焊接过程与填料过程同时进行,提高了搅拌摩擦焊对接头间隙的容忍性,消除了焊缝减薄问题.

    (2) 填充材料与基材实现了良好的冶金连接,经过剧烈塑性变形后,焊核区和填充材料发生动态再结晶,表现为细小的等轴晶粒.

    (3) 未腐蚀接头抗拉强度达到388.9 MPa ± 1.4 MPa,断后伸长率为20.5% ± 0.4%,分别达到母材的99%及94%. 在腐蚀过程中焊核区和填充材料区耐腐蚀性能优于热影响区与母材,点蚀坑细小且均匀分布,7天盐雾腐蚀后接头保持优异的耐蚀性能.

  • 图  1   黑化处理原理图

    Figure  1.   Blackening process schematic

    图  2   分步气体介质下紫铜激光焊接模型

    Figure  2.   Laser welding model of copper in step gas medium. (a) blackening process; (b) welding after blackening process

    图  3   焊缝成形

    Figure  3.   Weld forming. (a) conventional welding;(b) stepwise gas medium

    图  4   不同氧气流量下焊缝横截面形貌

    Figure  4.   Cross section morphology of welds under different oxygen flow rates. (a) Q1 = 4 L/min; (b) Q1 = 8 L/min; (c) Q1 = 12 L/min; (d) Q1 = 16 L/min; (e) Q1 = 20 L/min

    图  5   焊缝熔深和熔宽

    Figure  5.   Weld penetration and widening

    图  6   能谱分析位置

    Figure  6.   Spectrum analysis position

    图  7   能谱图

    Figure  7.   Energy spectrum

    图  8   线扫描结果

    Figure  8.   Line scan results. (a) surface of weld; (b) cross profile of weld

    图  9   氧含量变化曲线图

    Figure  9.   Curve of oxygen content. (a) surface of weld; (b) cross profile of weld

    图  10   接头显微组织(Q1 = 8 L/min)

    Figure  10.   Microstructure of welded joint (Q1 = 8 L/min). (a) welded joint; (b) weld; (c) HAZ; (d) base metal

    图  11   不同条件下紫铜激光焊接接头硬度分布

    Figure  11.   Hardness distribution of laser welded joint of copper under different conditions

    图  12   分布气体介质下紫铜激光焊接接头断后试样

    Figure  12.   Specimen after fracture of laser welded joint of copper in distributed gas medium

    图  13   分布气体介质下紫铜激光焊接接头应力应变曲线

    Figure  13.   Stress-strain curve of copper laser welded joint in stepwise gas medium

    表  1   紫铜的化学元素组成(质量分数,%)

    Table  1   Chemical composition of copper

    CuFeNiPbZnSn其它
    > 99.90.0050.0050.0050.0050.005余量
    下载: 导出CSV

    表  2   激光焊接工艺参数

    Table  2   Laser welding parameters

    焊接条件激光功率P/kW焊接速度v /(mm·s−1)氧气流量Q1/(L·min−1)氩气流量Q2 /(L·min−1)
    常规焊9220
    黑化处理4.424/8/12/16/20
    分布气体介质7.50.6720
    下载: 导出CSV

    表  3   不同氧气流量下的最终焊缝宏观形貌

    Table  3   Macroscopic morphology of the final weld at different oxygen flows

    氧气流量焊缝表面焊缝背面
    4 L/min
    8 L/min
    12 L/min
    16 L/min
    20 L/min
    下载: 导出CSV

    表  4   黑化层成分分析结果

    Table  4   Results of composition in blackening layer

    位置质量分数w(%)原子分数a(%)
    O CuO Cu
    焊缝区32.3968.6164.535.5
    热影响区16.8483.1644.5855.42
    母材0.4299.581.6498.36
    下载: 导出CSV

    表  5   焊缝横截面氧化膜厚度(μm)

    Table  5   Weld seam cross section oxide film thickness

    焊缝区热影响区母材
    4701905
    下载: 导出CSV

    表  6   各试样拉伸试验结果

    Table  6   Tensile test results of each specimen

    拉伸试样氧气流量
    Q1/(L·min−1)
    应力
    σ/MPa
    紫铜母材383.31
    常规条件紫铜激光
    焊接接头试样
    299.59
    分步气体介质紫铜激光
    焊接接头试样1
    8356.58
    分步气体介质紫铜激光
    焊接接头试样2
    8349.7
    分步气体介质紫铜激光
    焊接接头试样3
    8343.8
    下载: 导出CSV
  • [1] 丁浩, 鲍雨梅, 张锐之, 等. T2紫铜-45钢异种材料电子束焊的焊接接头强度与缺陷评定[J]. 焊接学报, 2018, 39(5): 43 − 46. doi: 10.12073/j.hjxb.2018390119

    Ding Hao, Bao Yumei, Zhang Ruizhi, et al. Study on welding strength and defect assessment of the T2 copper-45 steel dissimilar material[J]. Transactions of the China Welding Institution, 2018, 39(5): 43 − 46. doi: 10.12073/j.hjxb.2018390119

    [2] 张冠星, 钟素娟, 程亚芳, 等. 基于紫铜黄铜钎焊的新型无银铜磷锡复合钎料[J]. 焊接学报, 2017, 38(12): 33 − 36. doi: 10.12073/j.hjxb.20160226005

    Zhang Guanxing, Zhong Sujuan, Cheng Yafang, et al. Compound non-silver copper-phosphorus-tin filler metals used for brazing brass/copper[J]. Transactions of the China Welding Institution, 2017, 38(12): 33 − 36. doi: 10.12073/j.hjxb.20160226005

    [3]

    Wei Guoqiang, Liu Henglin, Du Longchun, et al. Effect of electromigration and isothermal aging on interfacial microstructure and tensile fracture behavior of SAC305/Cu solder joint[J]. China Welding, 2016, 25(3): 42 − 48.

    [4] 于汉臣, 闫涵, 栾天旻, 等. 紫铜厚板GTAW热裂纹形成原因分析[J]. 焊接学报, 2018, 39(8): 87 − 91. doi: 10.12073/j.hjxb.2018390207

    Yu Hanchen, Yan Han, Luan Tianmin, et al. Investigation on the cause of the hot cracking in GTAW welding of thick copper plates[J]. Transactions of the China Welding Institution, 2018, 39(8): 87 − 91. doi: 10.12073/j.hjxb.2018390207

    [5] 张满, 夏之穹, 张临财, 等. 3003铝合金/紫铜异种金属钎焊接头力学性能及显微组织[J]. 焊接学报, 2015, 36(10): 69 − 72.

    Zhang Man, Xia Zhiqiong, Zhang Lincai, et al. Mechanical property and microstructure of 3003 Al-alloy/Cu dissimilar metals brazed joint[J]. Transactions of the China Welding Institution, 2015, 36(10): 69 − 72.

    [6]

    Moalem A, Witzendorff P V, Stute U, et al. Reliable copper spot welding with IR laser radiation through short prepulsing[J]. Procedia Cirp, 2012, 3: 459 − 464. doi: 10.1016/j.procir.2012.07.079

    [7] 丁浩, 鲍雨梅, 柴国钟, 等. T2紫铜-45钢电子束焊双材料界面性能与裂纹偏转[J]. 焊接学报, 2018, 39(4): 20 − 25.

    Ding Hao, Bao Yumei, Cai Guozhong, et al. Study on interfacial properties and crack deflection of the T2 copper-45 steel biomaterial[J]. Transactions of the China Welding Institution, 2018, 39(4): 20 − 25.

    [8] 雷玉成, 郁雯霞, 李彩辉, 等. 不预热情况下的紫铜TIG焊熔池温度场的数值模拟[J]. 焊接学报, 2006, 27(5): 1 − 4. doi: 10.3321/j.issn:0253-360X.2006.05.001

    Lei Yucheng, Yu Wenxia, Li Caihui, et al. Numerical simulation of molten pool temperature field for TIG welding of pure copper without preheating[J]. Transactions of the China Welding Institution, 2006, 27(5): 1 − 4. doi: 10.3321/j.issn:0253-360X.2006.05.001

    [9]

    Brockmann R. High performance disk laser technology extends possibilities for laser hybrid welding applications[J]. Welding and Cutting, 2009(4): 192 − 193.

    [10] 董鹏, 皮友东, 肖荣诗. 黄铜-紫铜异种材料激光焊接试验研究[J]. 电加工与模具, 2008(1): 43 − 46. doi: 10.3969/j.issn.1009-279X.2008.01.013

    Dong Peng, Pi Youdong, Xiao Rongshi. Experiment research on laser beam welding of dissimilar metals between brass and copper[J]. Electromachining Mould, 2008(1): 43 − 46. doi: 10.3969/j.issn.1009-279X.2008.01.013

    [11]

    Eva-Maria Dold, Elke Kaiser, Konrad Klausmann, et al. High-performance welding of copper with green multi-kW continuous-wave disk lasers[C]//Society of Photo-Optical Instrumentation Engineers, 2019: 109110U.1-109110U.6

图(13)  /  表(6)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  17
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 网络出版日期:  2020-12-09
  • 刊出日期:  2021-01-06

目录

/

返回文章
返回