高级检索

纤维增强热塑性树脂基复合材料与金属激光连接研究进展

徐洁洁, 王栋, 肖荣诗, 黄婷

徐洁洁, 王栋, 肖荣诗, 黄婷. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
引用本文: 徐洁洁, 王栋, 肖荣诗, 黄婷. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
Citation: XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002

纤维增强热塑性树脂基复合材料与金属激光连接研究进展

基金项目: 北京市教委科技重点项目(KZ202010005011)
详细信息
    作者简介:

    徐洁洁,博士研究生;主要从事激光先进制造方向研究;Email: xujj@bjut.edu.cn

    通讯作者:

    黄婷,博士,研究员,博士研究生导师;Email: huangting@bjut.edu.cn.

  • 中图分类号: TG 456.7

Laser joining of fiber reinforced thermoplastic composites and metal

  • 摘要: 纤维增强热塑性树脂基复合材料与金属的异质构件在轻量化现代装备中的应用日趋广泛,实现异质构件优质、高效、可靠的连接具有重要的学术意义和工程应用价值. 详细综述了异质接头激光连接原理和界面结合机制,以及连接界面结合强度增强方法和激光连接工艺对连接接头抗剪强度的影响. 通过增强机械结合和化学键结合,同时采用控制激光热输入、施加压力、填充树脂材料等措施抑制缺陷的产生,接头抗剪强度已可以满足工业应用对静载强度的要求. 同时展望了纤维增强热塑性树脂基复合材料与金属激光连接技术的发展趋势.
    Abstract: The structure composed with fiber reinforced thermoplastic composites and metal is effective to realize lightweight in the modern equipment manufacturing. Therefore, it is of great academic significance and practical value to achieve high quality, efficient and reliable joining in between. This paper reviews the recent research achievement of laser joining of fiber reinforced thermoplastic composites and metal at home and abroad. The laser joining principle, the bonding mechanism of interface as well as its strengthening methods, and the influence of laser joining parameters on shear strength were introduced in detail. The shear strength has satisfied the requirement of industrial application by using mechanical bonding and chemical bonding strengthening methods as well as avoiding joining defects through controlling the heat input, providing the clamping pressure, and using additional resin. Finally the tendency of development in the near future is predicated.
  • 纤维增强热塑性树脂基复合材料(简称热塑性复合材料,fiber reinforced thermoplastic composites,FRP)作为一种新型轻质结构材料,具有比强度高、耐腐蚀性好及抗疲劳性优异等特点[1-4],可广泛应用于航空航天、汽车、新能源装备等领域[5-9]. 如波音787客机[10]中复合材料占比达到50%,机身、机翼、尾翼等大多数主承力结构件均采用了复合材料. 传统金属材料因其可维修性、可回收性、低成本及成熟的成形、加工工艺等独特优势,依然是现代装备不可或缺的重要结构材料[11]. 为实现低成本和轻量化制造,在现代装备中越来越多地采用复合材料与金属材料的异质混合结构,这就不可避免地涉及复合材料与金属材料异质结构之间的连接问题.

    热塑性复合材料与金属异质结构件中最薄弱部分往往位于接头连接区域,接头连接质量将直接决定异质结构的性能和使用寿命. 如何实现热塑性复合材料与金属之间的优质、可靠、高效连接成为热塑性复合材料大面积推广应用所面临的一个亟待解决的技术难题.

    热塑性复合材料与金属异质结构常用的连接方法有:胶接、机械连接、机械及胶接混合连接等[12-17]. 胶接工艺中胶接剂固化时间长、效率低,且性能受环境影响较大. 机械连接时复合材料制孔难度大,易产生分层、纤维拔出等缺陷影响结构力学性能,刀具磨损严重导致加工成本高、效率低[18-20]. 机械胶接混合连接工序复杂、成本高,仅在某些特定结构使用. 上述问题使现有的连接工艺难以满足不断增长的异种结构的工程应用需求.

    焊接是结构件连接的重要基础加工方法,超声波焊接、搅拌摩擦焊、感应焊和激光焊等连接工艺在热塑性复合材料与金属异质结构连接中各具优势. 超声波焊接头强度高、焊接周期短,但异质构件的形状和连接尺寸受限于超声压头的尺寸[21- 22];搅拌摩擦焊工艺周期短,不需要额外添加材料,但金属母材厚度受限[23];感应焊可以实现异质结构的非接触连接,然而感应线圈尺寸限制了界面连接面积[24];激光焊接具有能量可控、可达性好、便于整形等特点,适用于多种接头形式的连接[25-29],在热塑性复合材料与金属异质结构连接方面极具潜力,成为近年来研究的热点. 针对热塑性复合材料与金属异质结构激光连接的最新研究进展进行综述总结.

    热塑性复合材料与金属的激光连接原理如图1示. 激光照射加热金属,通过热传导至连接界面处使复合材料的热塑性树脂基熔化,熔融树脂在外部压力的作用下与金属界面充分接触,冷却后形成连接接头.

    图  1  热塑性复合材料与金属的激光连接原理
    Figure  1.  Schematic of laser joining of FRP and metal

    热塑性复合材料与金属的激光连接界面结合机制包括以下3种.

    (1)物理结合:树脂分子与金属原子之间的距离小于分子间引力作用距离极限值时,界面处形成物理间吸附作用,主要包括范德华力和氢键. 对于范德华力,只要材料表面足够接近(3 ~ 5 Å)就可形成. 氢键的形成除了要满足上述条件之外,材料表面还应有电负性的原子共有质子[30-32].

    (2)机械结合:复合材料中的树脂嵌入金属表面凹凸不平的微结构中,两者在界面上微观区域形成机械锚固作用,其本质是一种摩擦力. 通过调控金属表面微结构,可以增强机械结合作用,提高接头力学性能[33-36].

    (3)化学键结合:金属表面原子与热塑性树脂表面活性官能团由于电荷的相互迁移而形成新的化学键,从而形成连接. 化学键形成的过程为复合材料中活性官能团中C=O断裂生成标准状态下的O,金属与复合材料表面的O形成M-O-C化学键[31, 35, 37-39]. 金属材料需满足一定热力学条件 (具有较大升华热和氧化热值)方能同复合材料树脂基体形成新的化学键,研究表明Al,Mg,Mn,Sn,Ti,V等金属可满足该条件[40- 41].

    基于不同的界面结合机制,可采用不同方法增强界面结合强度,提高接头力学性能. 由于氢键和范德华键为弱连接,范德华力低于9.6 kcal/mol、氢键键能在0.2 ~ 40 kcal/mol之间,比化学键的键能小1 ~ 2个数量级[42-44],物理结合对热塑性复合材料与金属异质结构连接接头性能不起主导作用. 目前,增强机械结合和化学键结合是提高接头力学性能的主要途径(图2).

    图  2  热塑性复合材料与金属结合机制
    Figure  2.  Bonding mechanism and the strengthening methods for FRP and metal

    增强机械结合主要通过调控金属材料表面微结构来增强机械锚固作用,实现接头力学性能的提高. 在金属表面预制微结构的方法包括化学处理、机械加工、激光加工等. 化学处理不能实现微结构的精确控制,且化学试剂造成环境污染[45-46]. 目前研究者主要采用机械和激光加工方法在金属表面预制微结构.

    机械加工方法主要包括砂纸打磨、喷丸处理、铣削等[47-50]. 砂纸打磨、喷丸处理表面状态难以控制,铣削加工微结构受刀具形状和尺寸的限制. 此类方法制备的微结构尺度通常在亚毫米量级,微结构密度较低,连接接头强度提高有限. 德国伊尔梅瑙工业大学学者[51]采用铣削加工工艺在AA6082铝合金表面预制平均深度为0.5 mm、平均宽度为0.7 mm的“凹槽结构”. 在优化的工艺参数下,铝合金与PA66热塑性树脂异质接头的抗剪强度最高仅为12.2 MPa.

    激光加工可在金属表面制备微米到毫米量级的特定微结构,其核心优势在于制备的微结构密度高,并且可以通过控制激光工艺参数在较大范围内调控金属表面微结构的形状和分布,因此可以获得更高的接头强度. Sheng等人[50]对比研究了砂纸打磨、激光刻蚀两种微结构对不锈钢/碳纤维增强热塑性复合材料(CFRTP)激光连接接头强度的影响. 砂纸打磨在不锈钢表面制备单向不均匀沟槽结构,接头抗剪强度由原始表面的11.75 MPa提高至14.6 MPa. 激光刻蚀的不锈钢表面具有均匀弹坑阵列结构,接头抗剪强度达到20.6 MPa.

    激光加工的微结构特征尺寸主要包括微结构宽度(W)、微结构深度(h)、微结构间距(d),如图3所示. 采用不同的激光扫描策略可获得锥形凸起[52]、线型[53]、网格槽、弹坑[54]、菱形阵列[55]、多孔结构[56]等多种形貌、具有不同特征尺寸的微结构[57-62]. 接头抗剪强度受到材料种类、微结构形貌、微结构尺寸以及断裂位置等因素的影响. 剪切力作用下,热塑性复合材料与金属激光连接接头的断裂模式可分为以下3种:基于连接界面断裂、基于微结构断裂、基于复材基体断裂(主要是纤维与树脂基体的剥离),如图4所示. 不同类型激光在金属表面预制微结构特征及连接接头抗剪强度的汇总见表1.

    图  3  典型激光加工微结构形貌
    Figure  3.  Typical morphology of the microstructures processed by laser. (a) schematic of microstructure; (b) protrusions; (c) parallel grooves; (d) gride structure and crater structure; (e) periodic array; (f) porous structures
    图  4  典型剪切作用力下连接接头断裂面
    Figure  4.  Typical fracture morphology of joints under shear force. (a) fracture at the interface; (b) fracture at the microstructure zone; (c) fracture at FRP zone
    表  1  激光加工微结构特征及连接接头抗剪强度
    Table  1.  Characteristics of microstructures processed by laser and the corresponding shear strength of joints
    复合材料/金属激光
    类型
    微结构形貌特征尺寸抗剪强度
    Rm/MPa
    断裂位置参考
    文献
    CFPA6/7075铝合金 连续激光 锥形凸起 h: 0.47 ~ 0.86 mm 39 锥形凸起结构根部 [52]
    PBT GF60UD/
    EN AW 6082铝合金
    连续激光 锥形凸起 h: 1.2 mm 21 锥形凸起结构根部 [48]
    连续激光 网格槽 h: 200 μm 30 部分微结构
    纳秒激光 h<100 nm 42 复合材料基体
    CFRTP(PPS)/
    304不锈钢
    弹坑 W:5 × 10 ~ 10 × 25 μm 20.6 复合材料基体 [50]
    PA66GF30/不锈钢 微秒激光 线型 W:40 μm, h:50 μm, d:200 μm, Sd= 0.35 20 [63]
    PA66GF30/
    EN AW 5182铝合金
    纳秒激光 网格槽 h:160 ~ 200 μm 20.8 复合材料基体 [54]
    弹坑 h:200 ~ 450 μm 20.3 复合材料基体
    PA6GF47/
    奥氏体不锈钢
    皮秒激光 多孔 W:10 ~ 50 μm
    h:50 ~ 150 μm
    26.58 复合材料基体 [56]
    下载: 导出CSV 
    | 显示表格

    微结构尺寸和密度是影响连接接头强度的重要参数[64 - 65]. 其中,微结构密度(Sd)指微结构投影面积与总面积的比值. 在低合金钢(HC420LA)和PA6-GF30的激光连接中[53],研究人员对比了线型微结构的沟槽角度、沟槽间距对接头强度的影响. 试验结果表明沟槽间距是影响接头强度的主要因素. 接头抗剪强度与沟槽间距成反比,沟槽间距为200 µm时可以得到最大接头抗剪强度为12 MPa,是间距为600 µm时接头抗剪强度的4倍.

    结构密度相同时,不同形状微结构具有相近的接头强度. Amend等人[54]在不锈钢表面分别制备深度为160 ,180 ,200 µm的网格槽结构和深度为200 ,320 ,450 µm的弹坑结构,研究了结构密度相同时微结构深度、形状对奥氏体不锈钢与PA6GF47激光连接接头的影响. 在相同的焊接工艺参数下几组试样都实现了奥氏体不锈钢与PA6GF47激光连接,接头抗剪强度均在20 MPa左右.

    不同类型激光器制备的微结构形貌和尺寸各具特征. 连续激光可制备尺度在亚毫米至毫米量级的微结构. 采用激光高速毛化预处理工艺(Surfi-Sculpt)在A7050铝合金表面制备锥形凸起结构[58],优化工艺条件下,铝合金与CFPA6的激光连接接头抗剪强度可提升到39 MPa,是原始表面接头抗剪强度的4倍. EN AW6082铝合金表面采用连续激光刻蚀网格槽结构后,同PBT GF60UD形成的连接接头抗剪强度最高可达30 MPa[48].

    脉冲激光(纳秒激光、皮秒激光)制备的微结构尺度通常在微米至百微米量级,同连续激光相比微结构密度更高. 皮秒激光刻蚀金属表面时会产生自组织微纳复合结构. 德国弗劳恩霍夫激光技术研究所采用皮秒激光在奥氏体不锈钢表面制备的微纳复合结构比纳秒激光刻蚀的沟槽结构具有更高的表面积[61]. 制备微纳复合结构后,PA6GF47与奥氏体不锈钢激光连接接头的抗剪强度最高值为26.58 MPa,断裂位于复合材料区域. 相同的连接工艺下,沟槽结构的接头抗剪强度为21.8 MPa[64].

    目前已有将飞秒激光刻蚀应用于塑料与金属激光连接的相关研究,但该技术应用于热塑性复合材料与金属激光连接的工作尚未见报道. 而热塑性复合材料与金属形成连接的本质是热塑性复合材料中的塑料基体同金属形成连接,因此飞秒激光刻蚀微结构的相关工作可作为借鉴,用于增强热塑性复合材料与金属连接界面的机械结合. Henrottin等人[55]对比了纳秒、皮秒以及飞秒激光刻蚀金属材料表面对异质构件激光连接接头的影响. 研究发现相对于纳秒激光,皮秒激光刻蚀微结构实现异质结构接头有效连接的微结构尺寸范围更大,且接头强度更高. 在较低的表面粗糙度下飞秒激光刻蚀的微结构可以实现基于热塑性复合材料的断裂模式,而皮秒激光、纳米激光则需要更高的微结构表面粗糙度才能获得同样的效果.

    连续激光制备微结构时,金属材料经历熔化冷却过程后显微组织由轧制状态转变为铸态,且难以避免热裂纹、孔洞等缺陷的产生[48],如图5a,5b所示. 微结构成为连接接头的薄弱区域,断裂通常发生于微结构. 虽然优化工艺可以获得较高的接头抗剪强度,但是微结构缺陷对接头疲劳性能的影响尚待研究. 纳秒激光刻蚀微结构热影响区较大,且微结构边缘存在熔化金属的附着物[55](图5c),影响接头力学性能. 超快激光具有超窄脉宽(一般小于10 ps)和超高能量密度,刻蚀过程中与材料的作用不同于常规的长脉冲激光,具有阈值效应以及极小的热影响区,不会产生气孔、裂纹等缺陷[55],如图5e所示. 同时超快激光与材料相互作用可以在表面诱导生成微纳米复合结构[58, 66](图5d,5f),增大微结构的表面积.

    图  5  不同类型激光器刻蚀微结构形貌
    Figure  5.  Morphology of microstructures processed. (a) continuous-wave laser; (b) continuous-wave laser; (c) nanosecond laser; (d) picosecond laser; (e) femtosecond laser; (f) femtosecond laser

    对复合材料树脂基表面或金属表面进行改性,可以有效增强两者之间的化学键结合.

    在复合材料树脂基表面改性方面,Zhang等人[67]采用丙烯酸作为接枝单体,通过在碳纤维增强复合材料表面进行紫外光接枝处理,使复合材料表面接枝大量的O-C=O和C=O键(图6a). 接枝后的复合材料与铝合金接头强度最高达到30.1 MPa (图6b). 认为接枝促进了复合材料与铝合金结合界面处“Al-C”和“Al-O-C”化学键的形成(图6c),同时减小了复合材料表面的润湿角(图6d),有利于熔融的复合材料在金属表面的浸润,从而提高了界面结合强度. 研究表明,紫外光接枝工艺主要受紫外光辐照时间的影响,该参数决定了复合材料表面化学键的类型、含量,以及润湿角.

    图  6  复合材料表面紫外光接枝
    Figure  6.  UV grafting modification for composite. (a) effect of irradiation time on the chemical bonds of FRP surface; (b) effect of irradiation time on the shear strength of the joint; (c) formation of new bonding at grafted CFRP/aluminum interface; (d) effect of irradiation time on the wetting angle on the grafted CFRP

    在金属表面改性方面,在低碳钢表面镀铬后,其与CF-PA6T激光连接性能有了显著改善,接头抗剪强度由9.3 MPa增加到22.1 MPa[68]. 分析表明低碳钢表面的Cr单质与复合材料基体活性官能团发生反应形成Cr-O-PA6T化学键,使界面结合显著增强. Zhang等人[69]采用阳极氧化,通过控制阳极氧化电压及时间,在铝合金表面形成纳米多孔结构的氧化铝(图7a),一方面可同复合材料形成Al-O-PA6化学键(图7b),另一方面又能增强机械锚固作用,接头强度大幅提高,由5.3 MPa提高至40 MPa以上(图7c图7d).

    图  7  金属表面阳极氧化
    Figure  7.  Anodizing of metal surface. (a) interfacial transition layer between CFRP and anodized aluminum; (b) new bonding formed in the interface between CFRP and anodized aluminum; (c) shear strength of A6061/CFRP joint (without anodizing); (d) shear strength of A6061/CFRP joint (anodizing)

    综上所述,通过增强机械结合和化学键结合可以使接头抗剪强度提高至40 MPa左右,满足工程应用中接头抗剪强度35 MPa的要求[70]. 激光加工技术可以在较大范围内调控微结构的尺寸和分布,是微结构制备的理想手段. 微结构中气孔、裂纹的缺陷显然会导致接头的抗疲劳性能的降低,而超快激光可以实现无缺陷微结构的制备. 紫外光接枝工艺可以在树脂表面引入特定的官能团,但是如何保证工艺的可控性尚需进一步的深入研究. 金属阳极氧化方法已初步证明相对于单一的界面强度增强方法,通过机械增强和化学键增强的协同作用,可以进一步提升接头的力学性能,但该方法受加工条件限制难以实现大尺寸构件的加工.

    热塑性复合材料与金属激光连接时可能产生未融合、孔洞、裂纹等缺陷,影响接头力学性能.

    由于熔融树脂流动性差,施加压力不足时熔融树脂和金属结合不充分会在界面处产生未融合缺陷[71](图8a). 孔洞缺陷包括两类(图8b):第Ⅰ类是由于复合材料中的树脂基体发生热分解而产生大量气态产物所形成的气孔,分布于连接界面附近,内壁光滑;第Ⅱ类称为缩孔,在接头冷却过程中产生,形成原因是不同位置的熔融复合材料基体凝固速率不同,树脂体积发生变化而形成的孔洞,分布在基体熔融区的边缘,形状不规则、孔壁粗糙,且气孔边缘存在微裂纹[39, 72](图8c). 增强机械结合在增加界面连接面积的同时,连接过程中需要更多的熔融树脂,熔融树脂填充量不足会导致微结构底部产生未填充孔洞[54],如图8d所示.针对不同类型缺陷产生的原因,研究者主要从控制激光热输入、施加压力、填充树脂材料等方面着手,优化激光连接工艺,减少接头缺陷的产生,改善接头的力学性能.

    图  8  典型接头缺陷
    Figure  8.  Typical defects of the joints .(a) non-fusion at the joint interface; (b) porosity; (c) cracks; (d) cavities

    二氧化碳激光器、固体激光器、光纤激光器和半导体激光器等典型工业激光器都可作为能量源,实现热塑性复合材料与金属的激光连接. 半导体激光器和光纤激光器具有波长短、金属材料吸收率高、电光转化效率高、可以光纤传输等特点,在复合材料与金属的异质构件激光连接中极具优势. 通过控制连接过程的热输入,可以最大限度降低激光热作用对树脂基体的热损伤,形成可靠界面连接,典型的优化连接工艺汇总见表2.

    表  2  热塑性复合材料与金属激光连接工艺参数
    Table  2.  Parameters of laser joining of FRP and metal
    材料激光器光斑尺寸
    φ/mm(调节方法)
    激光功率
    P/W
    焊接速度
    v/(mm·s−1)
    抗剪强度Rc/MPa
    (抗剪切力F/N)
    参考文献
    PA66GF30/
    铝合金5183
    半导体激光器 4 (离焦) 70 0.5 20.8 [54]
    CFRP/TC4 光纤激光器 0.6 ~ 1.06(离焦) 850 0.8 1 457 (抗剪切力) [73]
    CFRP/TC4 光纤激光器 离焦 750 0.6-1 1 024 (抗剪切力) [74]
    CFRP(T700)/304不锈钢 光纤激光器 离焦 320~350 4-5 15.8 [75-76]
    SCFPPS /TC4 CO2激光器 离焦 400~900 13.3 2 052 (抗剪切力) [77]
    CFRPA6 /钢 光纤激光器 离焦 400~1100 9 27.2 [78]
    CFRP(T700)/铝 光纤激光器 离焦、
    光束旋转
    1000~1400 15 1 403 (抗剪切力) [79]
    PA6GF47/
    不锈钢
    半导体激光器 5 mm × 30 mm
    (光束整形)
    525 26.58 [56]
    CFRP(T700)/铝 光纤激光器 振镜扫描 120~180 2-5 20 [80]
    PA6-GF30 /
    低合金钢
    光纤激光器 振镜扫描 74 6 13 [53]
    PA66GF30 /
    不锈钢
    半导体激光器 振镜扫描 250 20 [63]
    CFRP(T700)/304不锈钢 光纤激光器 振镜扫描 240~320 2-6 11.79 [81]
    CFRP/2060铝合金 光纤激光器 0.6 mm × 5.8 mm
    (光束整形)
    1000~5000 5-110 12.08 [82]
    下载: 导出CSV 
    | 显示表格

    激光连接热塑性复合材料和金属时,增大光斑尺寸一方面可以增加结合面宽度,另一方面可以降低激光功率密度,减少对复材基体的热损伤. 多数研究者通常采用大离焦量,将光斑直径扩大到3 ~ 7 mm的范围. 图9a所示为不同离焦量时Nd:YAG激光光斑直径及激光功率密度分布[83]. 离焦量从0 mm增大到30 mm,光斑直径扩大到7.2 mm,激光能量密度则由1.7 kW/mm2降低到12 W/mm2,此时连接接头强度最高. 虽然通过简单调节离焦量可以调节功率密度,但由于光斑内能量分布不均匀,导致连接界面温度分布不均匀,中心区域过高的温度会造成树脂基体的热损伤,而光斑边缘则可能由于温度过低不能形成有效连接,降低了接头的有效连接面积[84]. Engelmann等人[64]将高斯分布的圆形光斑进行光束整形,得到尺寸为5 mm × 30 mm能量均匀分布的矩形光斑. 通过光束整形可以获得能量均匀分布的大尺寸光斑,更有利于焊接过程中界面温度的控制. Wang等人[82]采用积分镜获得能量密度均匀的矩形光斑(图9b)实现了CFRP/2060铝合金高功率高速度激光连接,在提高连接效率的同时获得了高质量的连接接头. 另外,高速振镜扫描也是一种成熟的光斑整形方法. 通过规划扫描轨迹和轨迹不同位置的激光功率,可以获得不同形状、大小及能量分布的等效光斑. 通过增加离焦量、光束整形、高速振镜扫描等方式增大激光光斑尺寸,在降低激光功率密度的同时增加界面有效连接面积,获得优异的连接接头.

    图  9  光斑尺寸及光斑内能量分布的影响
    Figure  9.  Effects of laser beam profiles and power densities. (a) circular spot; (b) rectangular beam

    针对连接过程中热输入量过高导致连接接头产生大量气孔的问题,Tan等人[78]研究了激光功率(400 ~ 1 100 W)对CFRPA6 /钢激光连接接头的影响规律. 激光功率为1 100 W时,高的热输入导致树脂基体大量分解,产生气孔缺陷,接头抗剪强度为16.8 MPa;激光功率降低到500 W,复材中的气孔显著减少,此时接头抗剪强度最大为27.2 MPa. Amend等人[85]在研究热输入量对PA6/不锈钢激光连接接头中气孔的影响时发现了同样的规律. 控制连接过程中的热输入量,可有效抑制界面中气孔的产生[86].

    采用试验测量或数值模拟与试验验证相结合的方式对连接接头界面的温度场进行研究[81,87]. Tao等人[77]使用热电偶测温仪实时检测激光连接过程中CFRP/TC4界面处的温度值(图10a). 连接界面温度随激光功率的增大而升高,激光功率为400 W时,界面温度为355 ℃,复材中的树脂基体在热作用下熔融但不发生热分解,界面中仅有少量的气孔;激光功率增大到900 W后,界面温度增加到956 ℃,树脂基体热分解产生大量的气孔. 在PEEK /铝合金的激光连接中[86],采用红外热像仪检测不同工艺参数铝合金表面温度场分布,建立接头抗剪强度与铝合金表面平均温度以及焊接时间的关系(图10b),得到了获得最佳接头抗剪强度的工艺窗口. Lambiase等人[88]和Wang等人[76]分别采用数值模拟的方法计算了不同工艺参数下复合材料与金属连接界面处温度场分布,并通过试验对模拟结果进行了验证(图10c,10d). 研究表明连接界面的温度场受激光功率和焊接速度的影响. 采用低功率、低速度的工艺参数控制焊接过程热输入量,使界面温度处于复材基体熔融温度和热解温度的区间内,可减少连接接头中的缺陷.

    图  10  复合材料/金属界面温度
    Figure  10.  Temperature distribution of the FRP/metal interface. (a) temperature of CFRP/TC4 interface at different laser powers; (b) shear strength of PEEK /Al joints as a function of the temperature and heating time; (c) maximum temperature distribution predicted by the FE model under different processing conditions; (d) temperature flied of CFRP/steel interface at different laser power

    激光焊接过程中对金属和熔融树脂施加压力,对实现两者连接极为重要. 装卡压力大小以及施加压力的方式均对接头力学性能有一定的影响[81, 89].

    在不锈钢和CFRP激光连接中[90],接头强度随装卡压力的增加先增大后减小. 在无卡具压力(0 MPa)时,由于不锈钢表面有一定粗糙度且熔融树脂流动性差,界面存在间隙,接头连接强度只有6 MPa左右. 增大装卡压力,可以使不锈钢和熔融CFRP在界面充分接触,装卡压力为0.2 MPa时接头最大抗剪强度为11.75 MPa. 装卡压力超过0.2 MPa,过多的树脂由于压力的作用在边缘处扩展,界面处同金属形成界面连接的熔融树脂减少,导致接头力学性能逐渐下降.

    PA66-GF30与TC4激光连接过程中[91],热作用导致PA66-GF30凝固收缩以及PA66发生热分解,连接接头产生大量气孔,接头强度仅为13.8 MPa. 调整样件装卡方式,对样件的整体施加压力改为对搭接接头施加压力(图11),可有效抑制连接接头气孔的产生,接头抗剪强度增加至41.5 MPa. 通过改变装卡方式,促进熔融树脂的流动并且改变复材基体凝固顺序,从而减少气孔的数量.

    图  11  装卡方式对连接接头形貌的影响
    Figure  11.  Morphologies of joint with different type of pressing clamp. (a) clamp with preset pads; (b) clamp without preset pads

    针对金属表面预制微结构后熔融树脂量不足导致的未填充孔洞缺陷,Jiao等人[84, 92- 93]通过添加树脂层,增加结合面熔融树脂量,避免了缺陷产生. 铝合金与CFRP接头抗剪强度由15.8 MPa增加到37.5 MP. 304不锈钢与CFRP接头抗剪强度最高可达15.1 MPa,较原始接头增长116%. 接头抗剪强度随添加树脂层的厚度先增加后减小. 树脂添加量不足不能有效填充微结构,导致连接界面产生未填充孔洞;添加树脂量过多,部分未熔融树脂不能与复材结合,填充层与复材界面处产生间隙[92],如图12所示. 激光连接复合材料和表面预制微结构的金属时,应选用适当的树脂层添加量,保证其在焊接过程中可以充分熔融有效填充金属表面微结构.

    图  12  不同厚度PA层的连接界面
    Figure  12.  Effect of additional PA layer on the joining interface. (a) without PA; (b) 80 μm-thick PA layer; (c) 640 μm-thick PA layer

    综上所述,研究者大多采用大尺寸光斑、低功率(<1 500 W)、低焊接速度(<15 mm/s)的激光工艺参数,优化激光功率密度和热输入,抑制由于复材基体热损伤产生的缺陷;通过改变装卡方式、调整装卡压力等措施减少接头中的未融合、缩孔;添加树脂材料增加界面熔融树脂量防止未填充孔洞的产生. 此外,在塑料与金属的激光连接中,Chen等人[94-95]采用超声振动辅助激光焊接的方法,有效抑制了连接界面气孔的生成,提高接头的力学性能,从原理上该方法也应可以用于热塑性复合材料与金属的激光连接中,减少连接界面中的气孔等缺陷.

    纤维增强热塑性复合材料与金属的异质结构连接是现代装备实现结构轻量化的必然发展方向. 针对这两类材料异质接头激光连接的相关研究进行了综述总结. 根据界面结合机制采取增强机械结合方法、增强化学键结合方法可提高接头静载性能,接头抗剪强度可达40 MPa左右,可以同胶接等传统连接方法媲美,满足工业应用中对接头静载强度的要求,并且具有更高的加工效率. 然而,现代装备中众多异质构件需要同时承受静态和动态载荷,如飞机复合材料蒙皮与金属的异质结构件,因此接头的抗疲劳性能也应满足工程应用要求. 目前,针对热塑性复合材料于金属异质构件疲劳性能的研究主要围绕机械连接接头(如铆接、螺栓连接)、胶结接头、胶结和机械复合连接接头开展. 为提升异质构件铆接接头抗疲劳性能,研究人员在铆接的基础上复合钛铆钉和钛合金板材的激光焊接. 但是对热塑性复合材料与金属激光连接接头疲劳性能的研究鲜有涉及,如何改善连接接头的抗疲劳性能仍面临巨大的挑战.

    激光加工技术可以实现微结构尺度和形貌的调控,相对于增强机械结合方法中其他微结构制备手段更具优势. 目前,连续激光和长脉冲激光是该技术最常用的能量源,但是刻蚀过程的热效应引起的本质缺陷,是连接接头综合性能提升的瓶颈. 超快激光具有超窄脉宽和超高能量密度,可以制备无缺陷且表面积更高的微纳复合结构. 近年来随着超快激光技术的发展,其平均功率可达数百瓦甚至千瓦量级,为其应用于宏观加工创造了条件. 超快激光刻蚀工艺有望成为增强界面机械结合的理想手段之一. 在此基础上,进一步探索基于超快激光微结构制备的界面结合强度复合增强方法,发挥机械结合和化学键结合两种增强机制的协同作用,是未来实现纤维增强热塑性复合材料与金属连接接头综合性能突破的重要发展方向.

    研究者大多采用低功率、低速度进行热塑性复合材料与金属异质构件的激光连接,虽然能有效防止焊接缺陷的产生,但是效率较低. 目前,工业激光器迅猛发展,输出功率已达数万瓦,系统研究高功率条件下,稳定高效的激光连接工艺具有重要的实际应用价值. 未来在选用高功率高速度的工艺参数提高连接效率的同时可采取以下工艺措施提高连接接头的质量:通过光束整形调控激光功率密度以保障界面温度场分布均匀;发展材料表面处理技术,改善材料浸润性;采用随焊压紧的装卡方式促使焊接过程中熔融复材基体快速浸润金属表面.

  • 图  1   热塑性复合材料与金属的激光连接原理

    Figure  1.   Schematic of laser joining of FRP and metal

    图  2   热塑性复合材料与金属结合机制

    Figure  2.   Bonding mechanism and the strengthening methods for FRP and metal

    图  3   典型激光加工微结构形貌

    Figure  3.   Typical morphology of the microstructures processed by laser. (a) schematic of microstructure; (b) protrusions; (c) parallel grooves; (d) gride structure and crater structure; (e) periodic array; (f) porous structures

    图  4   典型剪切作用力下连接接头断裂面

    Figure  4.   Typical fracture morphology of joints under shear force. (a) fracture at the interface; (b) fracture at the microstructure zone; (c) fracture at FRP zone

    图  5   不同类型激光器刻蚀微结构形貌

    Figure  5.   Morphology of microstructures processed. (a) continuous-wave laser; (b) continuous-wave laser; (c) nanosecond laser; (d) picosecond laser; (e) femtosecond laser; (f) femtosecond laser

    图  6   复合材料表面紫外光接枝

    Figure  6.   UV grafting modification for composite. (a) effect of irradiation time on the chemical bonds of FRP surface; (b) effect of irradiation time on the shear strength of the joint; (c) formation of new bonding at grafted CFRP/aluminum interface; (d) effect of irradiation time on the wetting angle on the grafted CFRP

    图  7   金属表面阳极氧化

    Figure  7.   Anodizing of metal surface. (a) interfacial transition layer between CFRP and anodized aluminum; (b) new bonding formed in the interface between CFRP and anodized aluminum; (c) shear strength of A6061/CFRP joint (without anodizing); (d) shear strength of A6061/CFRP joint (anodizing)

    图  8   典型接头缺陷

    Figure  8.   Typical defects of the joints .(a) non-fusion at the joint interface; (b) porosity; (c) cracks; (d) cavities

    图  9   光斑尺寸及光斑内能量分布的影响

    Figure  9.   Effects of laser beam profiles and power densities. (a) circular spot; (b) rectangular beam

    图  10   复合材料/金属界面温度

    Figure  10.   Temperature distribution of the FRP/metal interface. (a) temperature of CFRP/TC4 interface at different laser powers; (b) shear strength of PEEK /Al joints as a function of the temperature and heating time; (c) maximum temperature distribution predicted by the FE model under different processing conditions; (d) temperature flied of CFRP/steel interface at different laser power

    图  11   装卡方式对连接接头形貌的影响

    Figure  11.   Morphologies of joint with different type of pressing clamp. (a) clamp with preset pads; (b) clamp without preset pads

    图  12   不同厚度PA层的连接界面

    Figure  12.   Effect of additional PA layer on the joining interface. (a) without PA; (b) 80 μm-thick PA layer; (c) 640 μm-thick PA layer

    表  1   激光加工微结构特征及连接接头抗剪强度

    Table  1   Characteristics of microstructures processed by laser and the corresponding shear strength of joints

    复合材料/金属激光
    类型
    微结构形貌特征尺寸抗剪强度
    Rm/MPa
    断裂位置参考
    文献
    CFPA6/7075铝合金 连续激光 锥形凸起 h: 0.47 ~ 0.86 mm 39 锥形凸起结构根部 [52]
    PBT GF60UD/
    EN AW 6082铝合金
    连续激光 锥形凸起 h: 1.2 mm 21 锥形凸起结构根部 [48]
    连续激光 网格槽 h: 200 μm 30 部分微结构
    纳秒激光 h<100 nm 42 复合材料基体
    CFRTP(PPS)/
    304不锈钢
    弹坑 W:5 × 10 ~ 10 × 25 μm 20.6 复合材料基体 [50]
    PA66GF30/不锈钢 微秒激光 线型 W:40 μm, h:50 μm, d:200 μm, Sd= 0.35 20 [63]
    PA66GF30/
    EN AW 5182铝合金
    纳秒激光 网格槽 h:160 ~ 200 μm 20.8 复合材料基体 [54]
    弹坑 h:200 ~ 450 μm 20.3 复合材料基体
    PA6GF47/
    奥氏体不锈钢
    皮秒激光 多孔 W:10 ~ 50 μm
    h:50 ~ 150 μm
    26.58 复合材料基体 [56]
    下载: 导出CSV

    表  2   热塑性复合材料与金属激光连接工艺参数

    Table  2   Parameters of laser joining of FRP and metal

    材料激光器光斑尺寸
    φ/mm(调节方法)
    激光功率
    P/W
    焊接速度
    v/(mm·s−1)
    抗剪强度Rc/MPa
    (抗剪切力F/N)
    参考文献
    PA66GF30/
    铝合金5183
    半导体激光器 4 (离焦) 70 0.5 20.8 [54]
    CFRP/TC4 光纤激光器 0.6 ~ 1.06(离焦) 850 0.8 1 457 (抗剪切力) [73]
    CFRP/TC4 光纤激光器 离焦 750 0.6-1 1 024 (抗剪切力) [74]
    CFRP(T700)/304不锈钢 光纤激光器 离焦 320~350 4-5 15.8 [75-76]
    SCFPPS /TC4 CO2激光器 离焦 400~900 13.3 2 052 (抗剪切力) [77]
    CFRPA6 /钢 光纤激光器 离焦 400~1100 9 27.2 [78]
    CFRP(T700)/铝 光纤激光器 离焦、
    光束旋转
    1000~1400 15 1 403 (抗剪切力) [79]
    PA6GF47/
    不锈钢
    半导体激光器 5 mm × 30 mm
    (光束整形)
    525 26.58 [56]
    CFRP(T700)/铝 光纤激光器 振镜扫描 120~180 2-5 20 [80]
    PA6-GF30 /
    低合金钢
    光纤激光器 振镜扫描 74 6 13 [53]
    PA66GF30 /
    不锈钢
    半导体激光器 振镜扫描 250 20 [63]
    CFRP(T700)/304不锈钢 光纤激光器 振镜扫描 240~320 2-6 11.79 [81]
    CFRP/2060铝合金 光纤激光器 0.6 mm × 5.8 mm
    (光束整形)
    1000~5000 5-110 12.08 [82]
    下载: 导出CSV
  • [1]

    Che D, Saxena I, Han P, et al. Machining of carbon fiber reinforced plastics/polymers: a literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136(3): 034001.1 − 034001.22.

    [2]

    Frketic J, Dickens T, Ramakrishnan S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing[J]. Additive Manufacturing, 2017, 14: 69 − 86. doi: 10.1016/j.addma.2017.01.003

    [3]

    Huang D, Zhao X. Novel modified distribution functions of fiber length in fiber reinforced thermoplastics[J]. Composites Science and Technology, 2019, 182: 107749.1 − 107749.12.

    [4]

    Soutis C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2): 143 − 151. doi: 10.1016/j.paerosci.2005.02.004

    [5]

    Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22 − 34. doi: 10.1016/j.paerosci.2018.01.001

    [6]

    Kaufman B, Briant C. Metallurgical design and industry: prehistory to the space age[M]. Switzerlang: Springer, 2018.

    [7]

    Hashish M, Kent W. Trimming of CFRP aircraft components[R]. Proceedings of the WaterJet Technology Association-Industrial & Municipal Cleaning Association(WJTA-IMCA) Conference and Expo, 2013.

    [8]

    Jerome P, Cedex B. Composite materials in the airbus A380-from history to future[R]. Proceedings of the Beijing: Proceedings 13th International Conference on Composite Materials (ICCM-13), Plenary Lecture, CD-ROM, 2001.

    [9]

    Krebs F, Larsen L, Braun G, et al. Design of a multifunctional cell for aerospace CFRP production[M]. Heidelberg, Advances in Sustainable and Competitive Manufacturing Systems, 2013.

    [10]

    Baldwin H. The new-technology boeing 787 dreamliner, which makes extensive use of composite materials, promises to revolutionize commercial air travel[J]. Aviation Week & Space Technology, 2005(3): S1 − S30.

    [11]

    M'saoubi R, Axinte D, Soo S, et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals, 2015, 64(2): 557 − 580. doi: 10.1016/j.cirp.2015.05.002

    [12]

    Pramanik A, Basak A, Dong Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101: 1 − 29. doi: 10.1016/j.compositesa.2017.06.007

    [13]

    Lambiase F, Ko D-C. Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets[J]. Materials & Design, 2016, 107: 341 − 52.

    [14]

    Wang H, Yang K, Liu L. The analysis of welding and riveting hybrid bonding joint of aluminum alloy and polyether-ether-ketone composites[J]. Journal of Manufacturing Processes, 2018, 36: 301 − 308. doi: 10.1016/j.jmapro.2018.10.031

    [15]

    Mariam M, Afendi M, Majid M, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods [J]. Composite Structures, 2018, 200: 647-658.

    [16]

    Sadowski T, Golewski P, Zarzeka-Raczkowska E. Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256 − 1262. doi: 10.1016/j.commatsci.2010.06.022

    [17]

    Galvez P, Abenojar J, Martinez M. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives[J]. Composites Part B:Engineering, 2019, 165: 1 − 9. doi: 10.1016/j.compositesb.2018.11.097

    [18]

    Altin M, Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318 − 326. doi: 10.1016/j.dt.2018.02.001

    [19]

    Goh G, Dikshit V, Nagalingam A, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137: 79 − 89.

    [20]

    Liu D, Tang Y, Cong W. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, 94(4): 1265 − 1279. doi: 10.1016/j.compstruct.2011.11.024

    [21]

    Lionetto F, Mele C, Leo P, et al. Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization[J]. Composites Part B:Engineering, 2018, 144: 134 − 142. doi: 10.1016/j.compositesb.2018.02.026

    [22] 张增焕, 苏轩, 李昊, 等. 导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响[J]. 焊接学报, 2019, 40(9): 93 − 98.

    Zhang Zenghuan, Su Xuan, Li Hao, et al. Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2019, 40(9): 93 − 98.

    [23]

    Goushegir S M, Dos Santos J F, Amancio-Filho S T. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance[J]. Materials & Design, 2014, 54: 196 − 206.

    [24]

    Mitschang P, Velthuis R, Emrich S, et al. Induction heated joining of aluminum and carbon fiber reinforced nylon 66[J]. Journal of Thermoplastic Composite Materials, 2009, 22(6): 767 − 801. doi: 10.1177/0892705709105969

    [25] 王传洋, 姜沐晖, 龙庆, 等. 激光工艺参数对PC/Cu/PC焊接性能及残余应力影响[J]. 焊接学报, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002

    Wang Chuanyang, Jiang Muhui, Long Qing, et al. Influence of laser process parameters on PC/Cu/PC welding performance and residual stress[J]. Transactions of the China Welding Institution, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002

    [26]

    David S, Debroy T. Current issues and problems in welding science[J]. Science, 1992, 257(5069): 497 − 502. doi: 10.1126/science.257.5069.497

    [27]

    Christensen C. New laser source technology[J]. Science, 1984, 224(4645): 117 − 23. doi: 10.1126/science.224.4645.117

    [28]

    Katayama S, Kawahito Y, Mizutani M. Latest progress in performance and understanding of laser welding[J]. Physics Procedia, 2012, 39: 8 − 16. doi: 10.1016/j.phpro.2012.10.008

    [29]

    Atanasov, Peter A. Laser welding of plastics: theory and experiments[J]. Optical Engineering, 1995, 34(10): 2976 − 2980. doi: 10.1117/12.210747

    [30]

    Holtkamp J, Roesner A, Gillner A. Advances in hybrid laser joining[J]. The International Journal of Advanced Manufacturing Technology, 2009, 47(9-12): 923 − 930.

    [31]

    Cantrell J. Determination of absolute bond strength from hydroxyl groups at oxidized aluminum-epoxy interfaces by angle beam ultrasonic spectroscopy[J]. Journal of Applied Physics, 2004, 96(7): 3775 − 3781. doi: 10.1063/1.1787144

    [32]

    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel[J]. Materials & Design, 2013, 47: 179 − 188.

    [33]

    Roesner A, Scheik S, Olowinsky A, et al. Innovative approach of joining hybrid components[J]. Journal of Laser Applications, 2011, 23(3): 3337 − 3344.

    [34]

    Jung K W, Kawahito A Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy[J]. Journal of Laser Applications, 2013, 25(3): 530 − 533.

    [35]

    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fibre reinforced plastic to stainless steel[J]. Science and Technology of Welding and Joining, 2013, 16(8): 676 − 680.

    [36]

    Wagner W C, Asgar K, Bigelow W C, et al. Effect of interfacial variables on metal-porcelain bonding[J]. Journal of Biomedical Materials Research, 1993, 27(4): 531 − 537. doi: 10.1002/jbm.820270414

    [37]

    Georgiev G L, Baird R J, Mccullen E F, et al. Chemical bond formation during laser bonding of Teflon® FEP and titanium[J]. Applied Surface Science, 2009, 255(15): 7078 − 7083. doi: 10.1016/j.apsusc.2009.03.046

    [38]

    Chou N J, Tang C H. Interfacial reaction during metallization of cured polyimide: An XPS study[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1984, 2(2): 751 − 755.

    [39]

    Katayama S, Kawahito Y. Laser direct joining of metal and plastic[J]. Scripta Materialia, 2008, 59(12): 1247 − 1250. doi: 10.1016/j.scriptamat.2008.08.026

    [40]

    Ho P S, Hahn P O, Bartha J W, et al. Chemical bonding and reaction at metal/polymer interfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1985, 3(3): 739 − 745.

    [41]

    Jordan J L, Kovac C A, Morar J F, et al. High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers[J]. Physcial Review B, Condens Matter, 1987, 36(3): 1369 − 1377. doi: 10.1103/PhysRevB.36.1369

    [42]

    Desiraju G R. The weak hydrogen bond: In structural chemistry and biology[M]. Britain: Oxford University Press, 1999.

    [43]

    Steiner T. The hydrogen bond in the solid state[J]. Angewandte Chemie International Edition, 2002, 41(1): 48 − 76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    [44] 顾继友. 胶接理论与胶接基础[M]. 北京: 科学出版社, 2004.

    Gu Jiyou. Bonding theory and bonding foundation[M]. Beijing: Science Press, 2004.

    [45]

    Saborowski E, Dittes A, Steinert P, et al. Effect of metal surface topography on the interlaminar shear and tensile strength of aluminum/polyamide 6 polymer-metal-hybrids[J]. Materials (Basel), 2019, 12(18): 2963.1 − 2963.16.

    [46]

    Shimamoto K, Sekiguchi Y, Sato C. Effects of surface treatment on the critical energy release rates of welded joints between glass fiber reinforced polypropylene and a metal[J]. International Journal of Adhesion and Adhesives, 2016, 67: 31 − 37. doi: 10.1016/j.ijadhadh.2015.12.022

    [47]

    Rauschenberger J, Cenigaonaindia A, Keseberg J, et al. Laser hybrid joining of plastic and metal components for lightweight components[J]. Proceedings of Spie the International Society for Optical Engineering, 2015, 9356: 1 − 10.

    [48]

    Heckert A, Zaeh M F. Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics[J]. Physics Procedia, 2014, 56: 1171 − 1181. doi: 10.1016/j.phpro.2014.08.032

    [49]

    Boutar Y, Sami Naïmi, Mezlini S, et al. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives, 2016, 67: 38 − 43. doi: 10.1016/j.ijadhadh.2015.12.023

    [50]

    Sheng L Y, Lai C, Xu Z F, et al. Effect of the surface texture on laser joining of a carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strengh of Materials, 2019, 51(1): 122-129.

    [51]

    Schricker K, Stambke M, Bergmann J P, et al. Macroscopic surface structures for polymer-metal hybrid joints manufactured by laser based thermal joining[J]. Physics Procedia, 2014, 56: 782 − 790. doi: 10.1016/j.phpro.2014.08.086

    [52]

    Zhang Z, Shan J, Tan X, et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 3465 − 3472.

    [53]

    Rodríguez-Vidal E, Sanz C, Soriano C, et al. Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints[J]. Journal of Materials Processing Technology, 2016, 229: 668 − 677. doi: 10.1016/j.jmatprotec.2015.10.026

    [54]

    Amend P, Pfindel S, Schmidt M. Thermal joining of thermoplastic metal hybrids by means of mono- and polychromatic radiation[J]. Physics Procedia, 2013, 41: 98 − 105. doi: 10.1016/j.phpro.2013.03.056

    [55]

    Henrottin A, Patars J, Ramos-de-Campos J. New approach for assembling dissimilar materials: laser technology[J]. Journal of Laser Micro Nanoengineering, 2018, 13(3): 296 − 300.

    [56]

    Kira V D S, Burkhardt I, Olowinsky A, et al. Laser-induced self-organizing microstructures on steel for joining with plymers[J]. Physics Procedia, 2016, 83: 1137 − 1144. doi: 10.1016/j.phpro.2016.08.119

    [57]

    Al-Sayyad A, Bardon J, Hirchenhahn P, et al. Aluminum pretreatment by a laser ablation process: influence of processing parameters on the joint strength of laser welded aluminum–polyamide assemblies[J]. Procedia CIRP, 2018, 74: 495 − 499. doi: 10.1016/j.procir.2018.08.136

    [58]

    Straeten K, Sparla J, Olowinsky A, et al. Influence of self-organizing microstructures on the wettability of molten plastic on steel for hybrid plastic-metal joints[J]. Welding in the World, 2019, 63(5): 1431 − 1441. doi: 10.1007/s40194-019-00765-6

    [59]

    Moldovan E, Tierean M, Stanciu E. Overview of joining dissimilar materials: Metals and polymers[J]. Bulletin of the Transilvania University of Brasov, 2017, 10(59): 39 − 46.

    [60]

    Lambiase F, Genna S. Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK)[J]. International Journal of Adhesion and Adhesives, 2018, 84: 265 − 274. doi: 10.1016/j.ijadhadh.2018.04.004

    [61] 管迎春. 一种基于互锁结构的激光选区加工连接金属与热塑性复合材料的方法: 中国, 201811118298.0[P]. 2019-01-22.

    Guan Yingchun. A laser selective machining method for joining metal and thermoplastic composites based on interlocking structure: China, 201811118298.0[P]. 2019-01-22.

    [62] 盛立远. 一种提升热塑性复合材料与金属连接强度的方法: 中国, 201810069446.8[P]. 2018-07-20.

    Sheng Liyuan. A method for improving the bonding strength of thermoplastic composites and metal: China, 201810069446.8[P]. 2018-07-20.

    [63]

    Roesner A, Scheik S, Olowinsky A, et al. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12: 370 − 377. doi: 10.1016/j.phpro.2011.03.146

    [64]

    Engelmann C, Eckstaedt J, Olowinsky A, et al. Experimental and simulative investigations of laser assisted plastic-metal-joints considering different load directions[J]. Physics Procedia, 2016, 83: 1118 − 1129. doi: 10.1016/j.phpro.2016.08.117

    [65]

    Ma F, Chen S, Han L, et al. Experimental and numerical investigation on the strength of polymer-metal hybrid with laser assisted metal surface treatment[J]. Journal of Adhesion Science and Technology, 2019, 33(10): 1112 − 1129. doi: 10.1080/01694243.2019.1582888

    [66]

    Tao H, Lin J, Hao Z, et al. Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Applied Physics Letters, 2012, 100(20): 1673 − 1775.

    [67]

    Zhang Z, Shan J, Tan X, et al. Evaluation of the CFRP grafting and its influence on the laser joining CFRP to aluminum alloy[J]. Journal of Adhesion Science and Technology, 2018, 32(4): 390 − 406. doi: 10.1080/01694243.2017.1357457

    [68] 谭向虎, 单际国, 任家烈. 镀 Cr 层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045

    Tan Xianghu, Shan Jiguo, Ren Jialie. Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating[J]. Acta Metallurgica Sinica Chinese Edition, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045

    [69]

    Zhang Z, Shan J G, Tan X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhesives, 2016, 70: 142 − 151. doi: 10.1016/j.ijadhadh.2016.06.007

    [70]

    Niedermeier M. Load introduction and coconnections[J]. Mechanics of Composite Materials, 2013, 11: 1 − 6.

    [71]

    Arkhurst B M, Seol J B, Lee Y S, et al. Interfacial structure and bonding mechanism of AZ31/carbon-fiber-reinforced plastic composites fabricated by thermal laser joining[J]. Composites Part B:Engineering, 2019, 167: 71 − 82. doi: 10.1016/j.compositesb.2018.12.002

    [72]

    Tan X, Zhang J, Shan J, et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel[J]. Composites Part B:Engineering, 2015, 70: 35 − 43.

    [73]

    Su J, Tan C, Wu Z, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124: 106006.1 − 106006.10.

    [74]

    Tan C, Su J, Zhu B, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics & Laser Technology, 2020, 129(3): 106273.

    [75]

    Sheng L Y, Jiao J K, Lai C. Assessment of the microstructure and mechanical properties of a laser-joined carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strength of Materials, 2018, 50(5): 752 − 63. doi: 10.1007/s11223-018-0020-8

    [76]

    Wang F, Jiao J, Wang Q, et al. A research on CFRP and stainless steel joining with fiber lasers[C]//International Congress on Applications of Lasers & Electro-Optics, 2015: 709-715.

    [77]

    Tao W, Su X, Chen Y, et al. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints[J]. Journal of Manufacturing Processes, 2019, 45: 1 − 8. doi: 10.1016/j.jmapro.2019.05.028

    [78]

    Tan X , Zhang J , Shan J , et al. The damage characteristics and mechanism of CFRP during laser joining of CFRP/mild steel dissimilar joint[C]//International Congress on Applications of Lasers & Electro-Optics, 2013: 582-589.

    [79]

    Li Y, Bu H, Yang H, et al. Effect of laser heat input on the interface morphology during laser joining of CFRTP and 6061 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 50: 366 − 379. doi: 10.1016/j.jmapro.2019.12.023

    [80]

    Jiao J, Ye Y, Jia S, et al. CFRTP -Al alloy laser assisted joining with a high speed rotational welding technology[J]. Optics & Laser Technology, 2020, 127: 106187.1 − 106187.8.

    [81]

    Jiao J, Xu Z, Wang Q, et al. Research on carbon fiber reinforced thermal polymer/stainless steel laser direct joining[J]. Journal of Laser Applications, 2018, 30(3): 032419.1 − 032419.8.

    [82]

    Wang D, Xu J, Huang T, et al. Effect of beam shaping on laser joining of CFRP and Al-Li alloy[J]. Optics & Laser Technology, 2021, 143: 107336.1 − 107336.6.

    [83]

    Kawahito Y, Tange A, Kubota S, et al. Development of direct laser joining for metal and plastic[C]//International Congress on Applications of Lasers & Electro-Optics. Laser insititute of America, 2006:604.

    [84]

    Sheng L, Jiao J, Du B, et al. Influence of processing parameters on laser direct joining of CFRTP and stainless steel[J]. Advances in Materials Science and Engineering, 2018, 2530521: 1 − 15.

    [85]

    Amend P, Mallmann G, Roth S, et al. Process-structure-property relationship of laser-joined thermoplastic metal hybrids[J]. Journal of Laser Applications, 2016, 28(2): 022403.1 − 022403.6.

    [86]

    Klaus S, Martin S, Pierre B J, et al. Laser-based joining of thermoplastics to metals: influence of varied ambient conditions on joint performance and microstructure[J]. International Journal of Polymer Science, 2016, 2016: 1 − 9.

    [87]

    Jiao J, Wang Q, Wang F, et al. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers[J]. Journal of Materials Processing Technology, 2017, 240: 362 − 369. doi: 10.1016/j.jmatprotec.2016.10.013

    [88]

    Lambiase F, Genna S, Kant R. Optimization of laser-assisted joining through an integrated experimental-simulation approach[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 2655 − 2666. doi: 10.1007/s00170-018-2113-8

    [89] 王强, 焦俊科, 昝少平, 等. 接触热导率对CFRTP/不锈钢激光直接连接温度场的影响[J]. 中国激光, 2017, 4: 36 − 44.

    Wang Qiang, Jiao Junke, Zan Shaoping, et al. Effect of thermal contact conductanceon temperature field of CFRTP/stainless steel laser direct joining[J]. Chinese Journal of Lasers Chinese Edition, 2017, 4: 36 − 44.

    [90]

    Jiao J, Xu Z, Wang Q, et al. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization[J]. Optics & Laser Technology, 2018, 103: 170 − 176.

    [91]

    Wang H, Chen Y, Guo Z, et al. Porosity elimination in modified direct laser joining of Ti6Al4V and thermoplastics composites[J]. Applied Sciences, 2019, 9(3): 411.1 − 411.8.

    [92]

    Jiao J, Jia S, Xu Z, et al. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method[J]. Composites Part B:Engineering, 2019, 173: 106911.1 − 106911.7.

    [93]

    Sheng L Y, Wang F Y, Wang Q, et al. Shear strength optimization of laser-joined polyphenylene sulfide-based CFRTP and stainless steel[J]. Strength of Materials, 2018, 50(5): 824 − 831. doi: 10.1007/s11223-018-0028-0

    [94]

    Chen Y J, Yue T M, Guo Z N. Combined effects of temperature field and ultrasonic vibation on bubble motion in lasr joining of plastic to metal[J]. Journal of Materials Processing Technology, 2021, 288: 116846.1 − 116846.14.

    [95]

    Chen Y J, Yue T M, Guo Z N. Laser joining of metals to plastics with ultrasonic vibration[J]. Journal of Materials Processing Technology, 2017, 249: 441 − 451. doi: 10.1016/j.jmatprotec.2017.06.036

  • 期刊类型引用(0)

    其他类型引用(4)

图(12)  /  表(2)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  47
  • PDF下载量:  76
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-10-24

目录

/

返回文章
返回