高级检索

纤维增强热塑性树脂基复合材料与金属激光连接研究进展

徐洁洁, 王栋, 肖荣诗, 黄婷

徐洁洁, 王栋, 肖荣诗, 黄婷. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
引用本文: 徐洁洁, 王栋, 肖荣诗, 黄婷. 纤维增强热塑性树脂基复合材料与金属激光连接研究进展[J]. 焊接学报, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002
Citation: XU Jiejie, WANG Dong, XIAO Rongshi, HUANG Ting. Laser joining of fiber reinforced thermoplastic composites and metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 73-86. DOI: 10.12073/j.hjxb.20200904002

纤维增强热塑性树脂基复合材料与金属激光连接研究进展

基金项目: 北京市教委科技重点项目(KZ202010005011)
详细信息
    作者简介:

    徐洁洁,博士研究生;主要从事激光先进制造方向研究;Email: xujj@bjut.edu.cn

    通讯作者:

    黄婷,博士,研究员,博士研究生导师;Email: huangting@bjut.edu.cn.

  • 中图分类号: TG 456.7

Laser joining of fiber reinforced thermoplastic composites and metal

  • 摘要: 纤维增强热塑性树脂基复合材料与金属的异质构件在轻量化现代装备中的应用日趋广泛,实现异质构件优质、高效、可靠的连接具有重要的学术意义和工程应用价值. 详细综述了异质接头激光连接原理和界面结合机制,以及连接界面结合强度增强方法和激光连接工艺对连接接头抗剪强度的影响. 通过增强机械结合和化学键结合,同时采用控制激光热输入、施加压力、填充树脂材料等措施抑制缺陷的产生,接头抗剪强度已可以满足工业应用对静载强度的要求. 同时展望了纤维增强热塑性树脂基复合材料与金属激光连接技术的发展趋势.
    Abstract: The structure composed with fiber reinforced thermoplastic composites and metal is effective to realize lightweight in the modern equipment manufacturing. Therefore, it is of great academic significance and practical value to achieve high quality, efficient and reliable joining in between. This paper reviews the recent research achievement of laser joining of fiber reinforced thermoplastic composites and metal at home and abroad. The laser joining principle, the bonding mechanism of interface as well as its strengthening methods, and the influence of laser joining parameters on shear strength were introduced in detail. The shear strength has satisfied the requirement of industrial application by using mechanical bonding and chemical bonding strengthening methods as well as avoiding joining defects through controlling the heat input, providing the clamping pressure, and using additional resin. Finally the tendency of development in the near future is predicated.
  • 搅拌摩擦焊(FSW)作为一种先进的固相连接技术,因不涉及被焊金属的熔化,可有效解决铝合金的焊接性难题,已被广泛应用于航空航天、汽车、轨道交通等领域[1-3]. 但工件在常规FSW过程中所受轴向力较大,因此对工件背部固定要求较高,需要精密的工装夹具,极大地限制了FSW在中空薄壁等结构上的应用. 同时,由于搅拌头自身结构特点,其焊接空间适应性也受到一定限制,无法实现无支撑复杂空间曲面结构的搅拌摩擦焊. 而双轴肩搅拌摩擦焊(BT-FSW)作为常规FSW的一个变体,引入下轴肩来代替背部垫板,使FSW技术成功应用于中空及空间无支持薄壁结构的焊接[4-5]. 此外,由于上下轴肩的对称产热,焊接接头在厚度方向的温度分布更加均匀,接头组织也大大改善,从根本上消除了接头根部缺陷. 但BT-FSW也有其缺点,比如热输入增加,在焊缝中间出现了汇流区,容易导致组织缺陷,因此需要研究其形成规律与抑制措施.

    目前,关于BT-FSW的研究主要集中在接头宏观成形、微观组织演变、力学性能、材料流动等方面,而关于焊接过程中材料流动行为的研究主要有试验和数值模拟两种方法. Chen等人[6]使用铜箔作为标记材料,试验研究了BT-FSW过程中的材料流动行为. 除常规的材料示踪技术之外,通过分析异质接头的宏/微观组织形貌也可以获得一定的接头内部材料流动信息. Tamadon等人[7]通过对多颜色橡皮泥层叠板进行BT-FSW,直观研究了BT-FSW过程中的材料流动特性,但结果的准确性并未得到充分验证. 尽管材料示踪技术已有效提升了人们对焊接过程中材料流动行为的认识,但试验方法仍存在诸多局限. 数值模拟方法作为现代材料加工过程研究的重要手段之一,在FSW过程材料流动行为研究中具有巨大潜力. 胡晓晴[8]使用Fluent软件研究了BT-FSW过程水平方向上的材料流动行为,得到了塑性材料流动二维模型迹线随时间变化规律. 目前,有关BT-FSW过程中塑性材料流动行为的模拟研究尚处于起步阶段[8-10],相关细节尚未被完全阐明. 课题组前期通过建立耦合欧拉−拉格朗日三维热力耦合计算模型,对BT-FSW的温度场和塑性应变场进行了初步研究,并在模型中预设示踪粒子,通过对粒子的运动轨迹追踪,阐明了材料的流动行为[11]. 而焊接工艺参数对BT-FSW过程中的温度场演变及材料流动起着至关重要的作用,工艺参数直接决定了焊接接头的质量.

    文中以4 mm厚2219-T87铝合金为研究对象,通过固定上下轴肩间隙s为3.8 mm,搅拌头转速n为300 r/min,分析了不同焊接速度v下,BT-FSW过程中的材料流动行为、接头组织和力学性能特征.

    选用ABAQUS有限元分析软件,基于耦合欧拉−拉格朗日法(CEL)建立了BT-FSW三维热力耦合模型. 如图1所示,该模型由焊板、搅拌头及欧拉空间三部分组成. 其中,欧拉空间尺寸为180 mm × 100 mm × 6.4 mm,焊板尺寸为150 mm × 100 mm × 4 mm,焊板位于欧拉空间中心,为观察前进侧/后退侧材料流动状态的差异,对左右焊板分别进行材料赋予(材料属性相同),如图1a所示. 欧拉空间采用梯度网格划分,近缝区网格尺寸为0.4 mm × 0.4 mm × 0.4 mm(图1b). 在实际焊接过程中,搅拌头轴肩通常采用凸面加涡旋槽设计. 为降低建模难度且较为准确地表达轴肩形貌在焊接过程中的作用,选择保留轴肩涡旋状特征,并将轴肩直径设定为13 mm,其余尺寸均与试验用焊接工具一致.

    图  1  计算模型及网格划分
    Figure  1.  Simulation model and meshing. (a) geometric model; (b) meshing near weld

    与课题组前期研究中的建模过程相同,采用Johnson-Cook材料模型,基于界面处的摩擦产热和材料塑性变形产热来计算焊接总产热. 忽略焊板与搅拌头之间的接触换热,设定焊板与夹具和空气之间的热交换系数分别为500 W/(m2·℃)和35 W/(m2·℃). 此外,采用对边界进行速度约束的方法模拟焊板表面位移边界,包括上下表面、左右侧面及前后侧面三部分.

    为直观判断焊接过程中的材料流动情况,采用示踪粒子(Tracer particle)技术对焊接过程中的材料流动进行追踪. 如图2所示,在距焊接起始位置80 ~ 105 mm范围内根据研究目的不同,在三个位置分别放置示踪粒子,具体如下:(Ⅰ)判断焊接过程中材料流动的总体趋势,在距焊板上下表面0.4 mm及厚度中心分别放置一层示踪粒子,每层放置51个示踪粒子,间距为0.4 mm,呈线性分布;(Ⅱ)为判断焊接过程中塑性材料水平方向的流动行为,在距焊板上表面0.4 mm及厚度中心分别放置一层示踪粒子,每层放置870个示踪粒子,平铺于11.6 mm × 14.4 mm长方形范围内,间距为0.4 mm;(Ⅲ)为判断焊接过程中塑性材料板厚方向的流动行为,沿焊缝横截面布置示踪点,共设置11层示踪粒子,每层放置51个示踪粒子,间距为0.4 mm.

    图  2  计算模型中示踪粒子设置(mm)
    Figure  2.  Tracer particle settings. (a) macrograph; (b) enlarged view of area; (c) enlarged view of area Ⅰ; (d) enlarged view of area Ⅱ

    文中选用的是4 mm厚2219-T87铝合金轧制板材. 2219是Al-Cu-Mn系铝合金,是一种典型的可热处理强化铝合金,具有比强度高、焊接性能好、力学性能优异等优点,目前已被广泛应用于航空航天领域,特别是在新一代航天火箭贮箱、燃料槽等部件有较好的应用前景[12].

    采用北京赛福斯特技术有限公司生产的FSW-RL31-010型专用搅拌摩擦焊机进行BT-FSW试验,焊接设备及焊板装夹情况如图3所示. 搅拌工具的上下轴肩直径均为16 mm,表面带有涡旋状凹槽;搅拌针直径为6 mm,具有三平面特征. 为保证焊接过程中轴肩与焊板表面充分接触,将轴肩作凸面设计,两轴肩的搅拌针根部间距为3.8 mm,轴肩外边缘间距为4.2 mm. 搅拌头转速固定为300 r/min,焊接速度依次设置为50 mm/min,150 mm/min和250 mm/min.

    图  3  BT-FSW设备及装夹
    Figure  3.  BT-FSW arrangement. (a) FSW machine; (b) schematic diagram of clamping

    焊接完成后,沿垂直焊接方向切取尺寸为50 mm × 10 mm × 4 mm的金相试样,并用砂纸对金相试样横截面进行磨制,随后对试样进行抛光和腐蚀,在OLYMPUS GX71型光学显微镜上观察试样截面组织特征. 此外,所有试样均沿横截面中心线进行显微硬度测试,试验载荷为1.96 N,保压时间为15 s. 拉伸试验在Instron 3382型电子万能试验机上进行,拉伸试样的标距为57 mm,拉伸速度为1 mm/min,拉伸性能以3个试样的平均值作为评价依据.

    图4a为不同焊接速度下焊板上表面焊接温度场分布. 可以看到,随着焊接速度增加,焊缝横截面中心线最高温度变化不大,这是由于焊缝中心温度主要受搅拌头产热控制,而焊接速度变化对搅拌头与塑性材料之间的相对运动速度影响较小. 为定量分析焊接过程中搅拌头产热的影响,试验以高强铝合金常用热处理时效温度150 ℃为参考[13],定义焊缝高温区,如图4b所示. 虽然增加焊接速度对焊缝中心线最高温度影响较小,但焊缝高温区尺寸变化显著. 随着焊接速度由50 mm/min增加至250 mm/min,焊缝高温区逐渐减小,宽度逐渐增大,该区域高宽比(H/B)由0.89减小至0.70. 这是由于随着焊接速度的增加,焊接热输入降低,垂直于焊接方向的高温区向焊缝中心线收缩;同时,焊接速度增加加剧了搅拌头前后温差,使得前方温度梯度更大,后方温度梯度变小.

    图  4  不同焊接速度下接头表面准稳态温度分布
    Figure  4.  Temperature distribution of the welds with different welding speeds. (a) temperature distribution in the work piece surface; (b) high temperature zone of weld (≥ 150 ℃)

    不同焊接速度下BT-FSW接头横截面中心线温度分布如图5所示. 可以看出,焊接速度的改变对焊缝内部温度影响较小,不同焊接速度下焊缝内部温度分布状态及大小均无明显差别. 但随着焊接速度增加,焊缝周围温度逐渐降低,这是由于在焊接过程中,整体焊接热输入与焊接速度成反比. 随着焊接速度增加,焊接热输入逐渐降低,焊接热影响区宽度逐渐减小.

    图  5  不同焊接速度下焊缝横截面中心线温度分布
    Figure  5.  Temperature distribution on the center line of the weld cross-section with different welding speeds

    不同焊接速度下BT-FSW接头横截面等效塑性应变如图6所示. 由图6可知,随着焊接速度增加,接头等效塑性应变值逐渐降低. 当焊接速度较高时,接头前进侧存在明显的低塑性应变区,这是材料填充不足所致;随着焊接速度降低,材料流动状态得到改善,该低塑性应变区逐渐向内收缩. 特别地,当焊接速度降至50 mm/min时,虽然上述区域已基本得到填充,但前进侧塑性变形区边缘仍存在少量未被消除的三角形低塑性应变区域(不充分搅拌区),且此时焊缝内部高塑性应变区中心出现反常降低,下面将结合焊后示踪粒子分布对该现象进行解释.

    图  6  不同焊接速度下焊缝横截面等效塑性应变分布
    Figure  6.  Equivalent plastic strain distribution of weld cross section with different welding speed

    图7为不同焊接速度下轴肩和搅拌针附近水平方向示踪粒子焊后分布情况. 可以看到,随着焊接速度增加,搅拌头对材料的驱动范围整体上向内收缩. 对比不同初始位置示踪粒子的焊后分布状态可知,焊接速度变化时,轴肩附近材料与搅拌针附近材料的变化趋势截然相反. 随着焊接速度增加,轴肩附近前进侧材料的分布在焊后变化不大,而后退侧材料则明显向后退侧收缩. 在BT-FSW过程中,前进侧材料受搅拌针直接驱动,流动过程主要受接触状态影响,焊接速度的改变对接触状态影响较小,因此该部分材料流动过程变化不大. 而后退侧材料受搅拌针间接驱动,流动过程比较平缓,焊接速度的增加直接减少了对该部分材料的驱动时间,因此分布范围向后退侧收缩. 观察搅拌针附近示踪粒子的焊后分布状态可知,焊接速度的增加对后退侧材料的影响较小,而前进侧材料分布范围则向前进侧扩展. 不同于轴肩附近,搅拌针附近材料的运动完全由搅拌针和焊板界面的接触主导,运动过程比较平缓. 随着焊接速度增加,搅拌针前方接触压力提高,极大改善了搅拌针和焊板界面的接触状态. 同时,搅拌针外缘线速度较小,焊接速度增加导致的线速度叠加在该处已不可忽略. 在上述两方面的共同影响下,受搅拌针直接驱动的前进侧材料流动得到加强,因此焊后分布向前进侧偏移.

    图  7  不同焊接速度下水平方向示踪粒子分布
    Figure  7.  Distribution of tracer particles in the horizontal direction with different welding speeds. (a) near the shoulder; (b) near the probe

    图8为不同焊接速度下轴肩与搅拌针附近板厚方向示踪粒子在焊后的分布情况. 由图8可知,随着焊接速度增加,板厚方向的材料流动减弱,焊缝区材料的混合状态也略有减弱. 当焊接速度较低时,轴肩附近的材料在前进侧搅拌头后方明显向厚度方向流动,并与搅拌针驱动的材料交汇,在此处形成典型的材料汇流区. 降低焊接速度在增强焊板表面材料流动的同时,也减弱了焊板中心的材料流动,因此不同厚度的材料混合并不充分,靠近板厚中心的材料仍保留部分层流特征.

    图  8  不同焊接速度下板厚方向示踪粒子分布
    Figure  8.  Distribution of tracer particles in the thickness direction with different welding speeds. (a) near the shoulder; (b) near the probe

    对比图7图8发现,上述低塑性应变区位于搅拌针驱动材料与次内层材料的交汇位置,流动较弱的三股材料在此处汇聚,从而形成了上述的低塑性应变区. 而此时前进侧搅拌针边缘发生外层材料的汇聚,形成高塑性应变区,但由于来自后退侧材料的挤压作用较弱,材料交汇形成的不充分搅拌区难以愈合.

    BT-FSW过程涉及复杂的产热与材料流动行为,接头内部组织形貌与焊缝成形过程中材料的流动行为密切相关. 图9为典型工艺参数下BT-FSW接头的横截面宏观组织形貌. 可以看到,接头不同区域组织存在明显差异. 与常规FSW接头相似,根据所经历的热循环和塑性变形程度的不同,BT-FSW接头可分为4个区域:焊核区(SZ)、热力影响区(TMAZ)、热影响区(HAZ)和母材(BM). 与常规FSW接头不同的是,由于上下轴肩的对称作用,BT-FSW接头横截面整体呈上下宽中间窄的哑铃形. 与此同时,下轴肩的引入增强了BT-FSW过程中的焊接热输入,焊缝整体温度略有升高,使得周围冷金属对热塑性金属的约束作用降低,SZ尺寸略有增加. 约束作用较弱,焊缝金属内部始终处于低压状态,因此对焊板原始对接面氧化物的破碎弥散作用不足,接头SZ内部清晰可见S线缺陷. 另外,与后退侧相比,接头前进侧TMAZ/SZ界面更为清晰,这是两侧材料流动状态的不同所致.

    图  9  BT-FSW接头横截面宏观组织形貌
    Figure  9.  Cross-sectional macrostructure of the BT-FSW joint

    当转速为300 r/min时,不同焊接速度下焊缝内部材料流动也有所不同,图10为搅拌头转速n = 300 r/min时,不同焊接速度下接头的宏观组织形貌. 由图10可见,不同焊接速度下焊缝内部材料的流动模式并未发生变化,但随着焊接速度降低,同一迁移周期内受驱动材料的体积减少,不同材料层间距减小,前进侧汇流区的材料混合充分并向后退侧延伸. 可以发现减小焊接速度并不能大幅增强汇流区材料向后退侧的挤压作用,这是由于搅拌头对热塑性材料以剪切摩擦作用为主,焊接速度的减小仅提高了对材料的驱动时间,而没有从根本上增强搅拌头对材料的驱动作用. 如图10c所示,当焊接速度过大时(250 mm/min),接头前进侧SZ形成不连续组织.

    图  10  不同焊接速度下接头宏观组织形貌
    Figure  10.  Macrostructure of BT-FSW joints at different welding speeds. (a) 50 mm/min; (b) 150 mm/min; (c) 250 mm/min

    图11为不同焊接速度下接头S线形貌,由图可知,当焊接速度较高时,接头S线形貌受搅拌头直接驱动的材料主导,随着焊接速度的降低,S线向前进侧偏移且形状变得复杂;而当焊接速度较低时,接头S线形貌主要由汇流区的材料与搅拌头直接驱动材料之间的相互挤压作用决定,随着焊接速度降低,S线向后退侧偏移. 两者之间的差异在于改变焊接速度并不能直接影响搅拌头对材料的驱动作用,因此不同焊接速度下接头S线的变化范围较小.

    图  11  不同焊接速度下接头S线形貌
    Figure  11.  S-line morphology of BT-FSW joints at different welding speeds

    不同焊接速度下接头的硬度分布曲线如图12所示.可以看出,接头硬度整体呈W形分布,硬度最低值均位于TMAZ附近. 随着焊接速度提高,接头硬度值整体呈上升趋势,这是由于焊接速度的提高降低了接头整体热输入,第二相回溶粗化现象减弱. 特别地,当焊接速度较高(250 mm/min)时,接头硬度最低点由后退侧转移至前进侧,造成该现象的原因主要是后退侧材料堆积程度不足. 后退侧材料堆积受焊接速度影响较大,焊接速度的提高导致该过程被削弱,热量累积作用减弱;而前进侧热量来源主要为搅拌头与焊板之间的摩擦产热,受焊速影响较小. 因此,随着焊接速度的提高,SZ外侧高温区由后退侧逐渐转移至前进侧,最终导致前进侧硬度低于后退侧.

    图  12  不同焊接速度下BT-FSW接头硬度分布曲线
    Figure  12.  The hardness distribution of BT-FSW joints at different welding speeds

    不同焊接速度下BT-FSW接头与母材抗拉强度及断后伸长率如图13所示. 可以看到,接头抗拉强度均低于母材. 当固定搅拌头转速为300 r/min时,随着焊接速度增加,接头力学性能先增大后稍有降低. 特别地,当焊接速度较低(50 mm/min)时,接头力学性能较差. 这是由于BT-FSW接头各区域组织差异较大,在拉伸过程中接头软化区往往会出现明显的应变局部化. 随着焊接速度降低,接头软化区硬度较低,因此接头强度随之减小.

    图  13  不同焊接速度下BT-FSW接头和母材拉伸性能对比
    Figure  13.  Comparison of tensile properties of BT-FSW joints with different process parameters and base material

    (1) 当增加焊接速度时,焊缝中心温度变化不大,但整体焊接热输入降低. 焊缝高温区逐渐变窄,该区域高宽比(H/B)由0.89减小至0.70. 轴肩附近的材料流动减弱,搅拌针附近的材料流动增强,前进侧板厚中心材料混合状态略有减弱.

    (2) BT-FSW接头可分为4个区域:焊核区(SZ)、热力影响区(TMAZ)、热影响区(HAZ)和母材(BM). 由于上下轴肩的对称作用,BT-FSW接头横截面整体呈上下宽中间窄的哑铃形. 当焊接速度增加时,材料汇流区及S线缺陷均向前进侧靠近,焊接速度过大时,前进侧SZ形成不连续组织.

    (3) BT-FSW接头横截面显微硬度整体呈W形分布,硬度最低点位于后退侧TMAZ. 随着焊接速度增加,SZ硬度逐渐增高. 随着焊接速度增加,接头抗拉强度先增大后稍有降低. 当转速为300 r/min,焊接速度为150 mm/min时,接头的抗拉强度最大,为414 MPa ± 4 MPa.

  • 图  1   热塑性复合材料与金属的激光连接原理

    Figure  1.   Schematic of laser joining of FRP and metal

    图  2   热塑性复合材料与金属结合机制

    Figure  2.   Bonding mechanism and the strengthening methods for FRP and metal

    图  3   典型激光加工微结构形貌

    Figure  3.   Typical morphology of the microstructures processed by laser. (a) schematic of microstructure; (b) protrusions; (c) parallel grooves; (d) gride structure and crater structure; (e) periodic array; (f) porous structures

    图  4   典型剪切作用力下连接接头断裂面

    Figure  4.   Typical fracture morphology of joints under shear force. (a) fracture at the interface; (b) fracture at the microstructure zone; (c) fracture at FRP zone

    图  5   不同类型激光器刻蚀微结构形貌

    Figure  5.   Morphology of microstructures processed. (a) continuous-wave laser; (b) continuous-wave laser; (c) nanosecond laser; (d) picosecond laser; (e) femtosecond laser; (f) femtosecond laser

    图  6   复合材料表面紫外光接枝

    Figure  6.   UV grafting modification for composite. (a) effect of irradiation time on the chemical bonds of FRP surface; (b) effect of irradiation time on the shear strength of the joint; (c) formation of new bonding at grafted CFRP/aluminum interface; (d) effect of irradiation time on the wetting angle on the grafted CFRP

    图  7   金属表面阳极氧化

    Figure  7.   Anodizing of metal surface. (a) interfacial transition layer between CFRP and anodized aluminum; (b) new bonding formed in the interface between CFRP and anodized aluminum; (c) shear strength of A6061/CFRP joint (without anodizing); (d) shear strength of A6061/CFRP joint (anodizing)

    图  8   典型接头缺陷

    Figure  8.   Typical defects of the joints .(a) non-fusion at the joint interface; (b) porosity; (c) cracks; (d) cavities

    图  9   光斑尺寸及光斑内能量分布的影响

    Figure  9.   Effects of laser beam profiles and power densities. (a) circular spot; (b) rectangular beam

    图  10   复合材料/金属界面温度

    Figure  10.   Temperature distribution of the FRP/metal interface. (a) temperature of CFRP/TC4 interface at different laser powers; (b) shear strength of PEEK /Al joints as a function of the temperature and heating time; (c) maximum temperature distribution predicted by the FE model under different processing conditions; (d) temperature flied of CFRP/steel interface at different laser power

    图  11   装卡方式对连接接头形貌的影响

    Figure  11.   Morphologies of joint with different type of pressing clamp. (a) clamp with preset pads; (b) clamp without preset pads

    图  12   不同厚度PA层的连接界面

    Figure  12.   Effect of additional PA layer on the joining interface. (a) without PA; (b) 80 μm-thick PA layer; (c) 640 μm-thick PA layer

    表  1   激光加工微结构特征及连接接头抗剪强度

    Table  1   Characteristics of microstructures processed by laser and the corresponding shear strength of joints

    复合材料/金属激光
    类型
    微结构形貌特征尺寸抗剪强度
    Rm/MPa
    断裂位置参考
    文献
    CFPA6/7075铝合金 连续激光 锥形凸起 h: 0.47 ~ 0.86 mm 39 锥形凸起结构根部 [52]
    PBT GF60UD/
    EN AW 6082铝合金
    连续激光 锥形凸起 h: 1.2 mm 21 锥形凸起结构根部 [48]
    连续激光 网格槽 h: 200 μm 30 部分微结构
    纳秒激光 h<100 nm 42 复合材料基体
    CFRTP(PPS)/
    304不锈钢
    弹坑 W:5 × 10 ~ 10 × 25 μm 20.6 复合材料基体 [50]
    PA66GF30/不锈钢 微秒激光 线型 W:40 μm, h:50 μm, d:200 μm, Sd= 0.35 20 [63]
    PA66GF30/
    EN AW 5182铝合金
    纳秒激光 网格槽 h:160 ~ 200 μm 20.8 复合材料基体 [54]
    弹坑 h:200 ~ 450 μm 20.3 复合材料基体
    PA6GF47/
    奥氏体不锈钢
    皮秒激光 多孔 W:10 ~ 50 μm
    h:50 ~ 150 μm
    26.58 复合材料基体 [56]
    下载: 导出CSV

    表  2   热塑性复合材料与金属激光连接工艺参数

    Table  2   Parameters of laser joining of FRP and metal

    材料激光器光斑尺寸
    φ/mm(调节方法)
    激光功率
    P/W
    焊接速度
    v/(mm·s−1)
    抗剪强度Rc/MPa
    (抗剪切力F/N)
    参考文献
    PA66GF30/
    铝合金5183
    半导体激光器 4 (离焦) 70 0.5 20.8 [54]
    CFRP/TC4 光纤激光器 0.6 ~ 1.06(离焦) 850 0.8 1 457 (抗剪切力) [73]
    CFRP/TC4 光纤激光器 离焦 750 0.6-1 1 024 (抗剪切力) [74]
    CFRP(T700)/304不锈钢 光纤激光器 离焦 320~350 4-5 15.8 [75-76]
    SCFPPS /TC4 CO2激光器 离焦 400~900 13.3 2 052 (抗剪切力) [77]
    CFRPA6 /钢 光纤激光器 离焦 400~1100 9 27.2 [78]
    CFRP(T700)/铝 光纤激光器 离焦、
    光束旋转
    1000~1400 15 1 403 (抗剪切力) [79]
    PA6GF47/
    不锈钢
    半导体激光器 5 mm × 30 mm
    (光束整形)
    525 26.58 [56]
    CFRP(T700)/铝 光纤激光器 振镜扫描 120~180 2-5 20 [80]
    PA6-GF30 /
    低合金钢
    光纤激光器 振镜扫描 74 6 13 [53]
    PA66GF30 /
    不锈钢
    半导体激光器 振镜扫描 250 20 [63]
    CFRP(T700)/304不锈钢 光纤激光器 振镜扫描 240~320 2-6 11.79 [81]
    CFRP/2060铝合金 光纤激光器 0.6 mm × 5.8 mm
    (光束整形)
    1000~5000 5-110 12.08 [82]
    下载: 导出CSV
  • [1]

    Che D, Saxena I, Han P, et al. Machining of carbon fiber reinforced plastics/polymers: a literature review[J]. Journal of Manufacturing Science and Engineering, 2014, 136(3): 034001.1 − 034001.22.

    [2]

    Frketic J, Dickens T, Ramakrishnan S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing[J]. Additive Manufacturing, 2017, 14: 69 − 86. doi: 10.1016/j.addma.2017.01.003

    [3]

    Huang D, Zhao X. Novel modified distribution functions of fiber length in fiber reinforced thermoplastics[J]. Composites Science and Technology, 2019, 182: 107749.1 − 107749.12.

    [4]

    Soutis C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2): 143 − 151. doi: 10.1016/j.paerosci.2005.02.004

    [5]

    Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22 − 34. doi: 10.1016/j.paerosci.2018.01.001

    [6]

    Kaufman B, Briant C. Metallurgical design and industry: prehistory to the space age[M]. Switzerlang: Springer, 2018.

    [7]

    Hashish M, Kent W. Trimming of CFRP aircraft components[R]. Proceedings of the WaterJet Technology Association-Industrial & Municipal Cleaning Association(WJTA-IMCA) Conference and Expo, 2013.

    [8]

    Jerome P, Cedex B. Composite materials in the airbus A380-from history to future[R]. Proceedings of the Beijing: Proceedings 13th International Conference on Composite Materials (ICCM-13), Plenary Lecture, CD-ROM, 2001.

    [9]

    Krebs F, Larsen L, Braun G, et al. Design of a multifunctional cell for aerospace CFRP production[M]. Heidelberg, Advances in Sustainable and Competitive Manufacturing Systems, 2013.

    [10]

    Baldwin H. The new-technology boeing 787 dreamliner, which makes extensive use of composite materials, promises to revolutionize commercial air travel[J]. Aviation Week & Space Technology, 2005(3): S1 − S30.

    [11]

    M'saoubi R, Axinte D, Soo S, et al. High performance cutting of advanced aerospace alloys and composite materials[J]. CIRP Annals, 2015, 64(2): 557 − 580. doi: 10.1016/j.cirp.2015.05.002

    [12]

    Pramanik A, Basak A, Dong Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101: 1 − 29. doi: 10.1016/j.compositesa.2017.06.007

    [13]

    Lambiase F, Ko D-C. Feasibility of mechanical clinching for joining aluminum AA6082-T6 and carbon fiber reinforced polymer sheets[J]. Materials & Design, 2016, 107: 341 − 52.

    [14]

    Wang H, Yang K, Liu L. The analysis of welding and riveting hybrid bonding joint of aluminum alloy and polyether-ether-ketone composites[J]. Journal of Manufacturing Processes, 2018, 36: 301 − 308. doi: 10.1016/j.jmapro.2018.10.031

    [15]

    Mariam M, Afendi M, Majid M, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods [J]. Composite Structures, 2018, 200: 647-658.

    [16]

    Sadowski T, Golewski P, Zarzeka-Raczkowska E. Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets[J]. Computational Materials Science, 2011, 50(4): 1256 − 1262. doi: 10.1016/j.commatsci.2010.06.022

    [17]

    Galvez P, Abenojar J, Martinez M. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives[J]. Composites Part B:Engineering, 2019, 165: 1 − 9. doi: 10.1016/j.compositesb.2018.11.097

    [18]

    Altin M, Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318 − 326. doi: 10.1016/j.dt.2018.02.001

    [19]

    Goh G, Dikshit V, Nagalingam A, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137: 79 − 89.

    [20]

    Liu D, Tang Y, Cong W. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, 94(4): 1265 − 1279. doi: 10.1016/j.compstruct.2011.11.024

    [21]

    Lionetto F, Mele C, Leo P, et al. Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization[J]. Composites Part B:Engineering, 2018, 144: 134 − 142. doi: 10.1016/j.compositesb.2018.02.026

    [22] 张增焕, 苏轩, 李昊, 等. 导能筋形状对超声波焊接CF/PEEK接头组织和力学性能的影响[J]. 焊接学报, 2019, 40(9): 93 − 98.

    Zhang Zenghuan, Su Xuan, Li Hao, et al. Effect of energy director on microstructure and mechanical properties of CF/PEEK joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2019, 40(9): 93 − 98.

    [23]

    Goushegir S M, Dos Santos J F, Amancio-Filho S T. Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance[J]. Materials & Design, 2014, 54: 196 − 206.

    [24]

    Mitschang P, Velthuis R, Emrich S, et al. Induction heated joining of aluminum and carbon fiber reinforced nylon 66[J]. Journal of Thermoplastic Composite Materials, 2009, 22(6): 767 − 801. doi: 10.1177/0892705709105969

    [25] 王传洋, 姜沐晖, 龙庆, 等. 激光工艺参数对PC/Cu/PC焊接性能及残余应力影响[J]. 焊接学报, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002

    Wang Chuanyang, Jiang Muhui, Long Qing, et al. Influence of laser process parameters on PC/Cu/PC welding performance and residual stress[J]. Transactions of the China Welding Institution, 2021, 42(1): 24 − 29. doi: 10.12073/j.hjxb.20201019002

    [26]

    David S, Debroy T. Current issues and problems in welding science[J]. Science, 1992, 257(5069): 497 − 502. doi: 10.1126/science.257.5069.497

    [27]

    Christensen C. New laser source technology[J]. Science, 1984, 224(4645): 117 − 23. doi: 10.1126/science.224.4645.117

    [28]

    Katayama S, Kawahito Y, Mizutani M. Latest progress in performance and understanding of laser welding[J]. Physics Procedia, 2012, 39: 8 − 16. doi: 10.1016/j.phpro.2012.10.008

    [29]

    Atanasov, Peter A. Laser welding of plastics: theory and experiments[J]. Optical Engineering, 1995, 34(10): 2976 − 2980. doi: 10.1117/12.210747

    [30]

    Holtkamp J, Roesner A, Gillner A. Advances in hybrid laser joining[J]. The International Journal of Advanced Manufacturing Technology, 2009, 47(9-12): 923 − 930.

    [31]

    Cantrell J. Determination of absolute bond strength from hydroxyl groups at oxidized aluminum-epoxy interfaces by angle beam ultrasonic spectroscopy[J]. Journal of Applied Physics, 2004, 96(7): 3775 − 3781. doi: 10.1063/1.1787144

    [32]

    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel[J]. Materials & Design, 2013, 47: 179 − 188.

    [33]

    Roesner A, Scheik S, Olowinsky A, et al. Innovative approach of joining hybrid components[J]. Journal of Laser Applications, 2011, 23(3): 3337 − 3344.

    [34]

    Jung K W, Kawahito A Y, Takahashi M, et al. Laser direct joining of carbon fiber reinforced plastic to aluminum alloy[J]. Journal of Laser Applications, 2013, 25(3): 530 − 533.

    [35]

    Jung K W, Kawahito Y, Takahashi M, et al. Laser direct joining of carbon fibre reinforced plastic to stainless steel[J]. Science and Technology of Welding and Joining, 2013, 16(8): 676 − 680.

    [36]

    Wagner W C, Asgar K, Bigelow W C, et al. Effect of interfacial variables on metal-porcelain bonding[J]. Journal of Biomedical Materials Research, 1993, 27(4): 531 − 537. doi: 10.1002/jbm.820270414

    [37]

    Georgiev G L, Baird R J, Mccullen E F, et al. Chemical bond formation during laser bonding of Teflon® FEP and titanium[J]. Applied Surface Science, 2009, 255(15): 7078 − 7083. doi: 10.1016/j.apsusc.2009.03.046

    [38]

    Chou N J, Tang C H. Interfacial reaction during metallization of cured polyimide: An XPS study[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1984, 2(2): 751 − 755.

    [39]

    Katayama S, Kawahito Y. Laser direct joining of metal and plastic[J]. Scripta Materialia, 2008, 59(12): 1247 − 1250. doi: 10.1016/j.scriptamat.2008.08.026

    [40]

    Ho P S, Hahn P O, Bartha J W, et al. Chemical bonding and reaction at metal/polymer interfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1985, 3(3): 739 − 745.

    [41]

    Jordan J L, Kovac C A, Morar J F, et al. High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers[J]. Physcial Review B, Condens Matter, 1987, 36(3): 1369 − 1377. doi: 10.1103/PhysRevB.36.1369

    [42]

    Desiraju G R. The weak hydrogen bond: In structural chemistry and biology[M]. Britain: Oxford University Press, 1999.

    [43]

    Steiner T. The hydrogen bond in the solid state[J]. Angewandte Chemie International Edition, 2002, 41(1): 48 − 76. doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    [44] 顾继友. 胶接理论与胶接基础[M]. 北京: 科学出版社, 2004.

    Gu Jiyou. Bonding theory and bonding foundation[M]. Beijing: Science Press, 2004.

    [45]

    Saborowski E, Dittes A, Steinert P, et al. Effect of metal surface topography on the interlaminar shear and tensile strength of aluminum/polyamide 6 polymer-metal-hybrids[J]. Materials (Basel), 2019, 12(18): 2963.1 − 2963.16.

    [46]

    Shimamoto K, Sekiguchi Y, Sato C. Effects of surface treatment on the critical energy release rates of welded joints between glass fiber reinforced polypropylene and a metal[J]. International Journal of Adhesion and Adhesives, 2016, 67: 31 − 37. doi: 10.1016/j.ijadhadh.2015.12.022

    [47]

    Rauschenberger J, Cenigaonaindia A, Keseberg J, et al. Laser hybrid joining of plastic and metal components for lightweight components[J]. Proceedings of Spie the International Society for Optical Engineering, 2015, 9356: 1 − 10.

    [48]

    Heckert A, Zaeh M F. Laser surface pre-treatment of aluminium for hybrid joints with glass fibre reinforced thermoplastics[J]. Physics Procedia, 2014, 56: 1171 − 1181. doi: 10.1016/j.phpro.2014.08.032

    [49]

    Boutar Y, Sami Naïmi, Mezlini S, et al. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives, 2016, 67: 38 − 43. doi: 10.1016/j.ijadhadh.2015.12.023

    [50]

    Sheng L Y, Lai C, Xu Z F, et al. Effect of the surface texture on laser joining of a carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strengh of Materials, 2019, 51(1): 122-129.

    [51]

    Schricker K, Stambke M, Bergmann J P, et al. Macroscopic surface structures for polymer-metal hybrid joints manufactured by laser based thermal joining[J]. Physics Procedia, 2014, 56: 782 − 790. doi: 10.1016/j.phpro.2014.08.086

    [52]

    Zhang Z, Shan J, Tan X, et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 3465 − 3472.

    [53]

    Rodríguez-Vidal E, Sanz C, Soriano C, et al. Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints[J]. Journal of Materials Processing Technology, 2016, 229: 668 − 677. doi: 10.1016/j.jmatprotec.2015.10.026

    [54]

    Amend P, Pfindel S, Schmidt M. Thermal joining of thermoplastic metal hybrids by means of mono- and polychromatic radiation[J]. Physics Procedia, 2013, 41: 98 − 105. doi: 10.1016/j.phpro.2013.03.056

    [55]

    Henrottin A, Patars J, Ramos-de-Campos J. New approach for assembling dissimilar materials: laser technology[J]. Journal of Laser Micro Nanoengineering, 2018, 13(3): 296 − 300.

    [56]

    Kira V D S, Burkhardt I, Olowinsky A, et al. Laser-induced self-organizing microstructures on steel for joining with plymers[J]. Physics Procedia, 2016, 83: 1137 − 1144. doi: 10.1016/j.phpro.2016.08.119

    [57]

    Al-Sayyad A, Bardon J, Hirchenhahn P, et al. Aluminum pretreatment by a laser ablation process: influence of processing parameters on the joint strength of laser welded aluminum–polyamide assemblies[J]. Procedia CIRP, 2018, 74: 495 − 499. doi: 10.1016/j.procir.2018.08.136

    [58]

    Straeten K, Sparla J, Olowinsky A, et al. Influence of self-organizing microstructures on the wettability of molten plastic on steel for hybrid plastic-metal joints[J]. Welding in the World, 2019, 63(5): 1431 − 1441. doi: 10.1007/s40194-019-00765-6

    [59]

    Moldovan E, Tierean M, Stanciu E. Overview of joining dissimilar materials: Metals and polymers[J]. Bulletin of the Transilvania University of Brasov, 2017, 10(59): 39 − 46.

    [60]

    Lambiase F, Genna S. Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK)[J]. International Journal of Adhesion and Adhesives, 2018, 84: 265 − 274. doi: 10.1016/j.ijadhadh.2018.04.004

    [61] 管迎春. 一种基于互锁结构的激光选区加工连接金属与热塑性复合材料的方法: 中国, 201811118298.0[P]. 2019-01-22.

    Guan Yingchun. A laser selective machining method for joining metal and thermoplastic composites based on interlocking structure: China, 201811118298.0[P]. 2019-01-22.

    [62] 盛立远. 一种提升热塑性复合材料与金属连接强度的方法: 中国, 201810069446.8[P]. 2018-07-20.

    Sheng Liyuan. A method for improving the bonding strength of thermoplastic composites and metal: China, 201810069446.8[P]. 2018-07-20.

    [63]

    Roesner A, Scheik S, Olowinsky A, et al. Laser assisted joining of plastic metal hybrids[J]. Physics Procedia, 2011, 12: 370 − 377. doi: 10.1016/j.phpro.2011.03.146

    [64]

    Engelmann C, Eckstaedt J, Olowinsky A, et al. Experimental and simulative investigations of laser assisted plastic-metal-joints considering different load directions[J]. Physics Procedia, 2016, 83: 1118 − 1129. doi: 10.1016/j.phpro.2016.08.117

    [65]

    Ma F, Chen S, Han L, et al. Experimental and numerical investigation on the strength of polymer-metal hybrid with laser assisted metal surface treatment[J]. Journal of Adhesion Science and Technology, 2019, 33(10): 1112 − 1129. doi: 10.1080/01694243.2019.1582888

    [66]

    Tao H, Lin J, Hao Z, et al. Formation of strong light-trapping nano- and microscale structures on a spherical metal surface by femtosecond laser filament[J]. Applied Physics Letters, 2012, 100(20): 1673 − 1775.

    [67]

    Zhang Z, Shan J, Tan X, et al. Evaluation of the CFRP grafting and its influence on the laser joining CFRP to aluminum alloy[J]. Journal of Adhesion Science and Technology, 2018, 32(4): 390 − 406. doi: 10.1080/01694243.2017.1357457

    [68] 谭向虎, 单际国, 任家烈. 镀 Cr 层对低碳钢/CFRP激光连接接头剪切强度及界面结合特征的影响[J]. 金属学报, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045

    Tan Xianghu, Shan Jiguo, Ren Jialie. Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating[J]. Acta Metallurgica Sinica Chinese Edition, 2013, 49(6): 751 − 756. doi: 10.3724/SP.J.1037.2013.00045

    [69]

    Zhang Z, Shan J G, Tan X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J]. International Journal of Adhesion and Adhesives, 2016, 70: 142 − 151. doi: 10.1016/j.ijadhadh.2016.06.007

    [70]

    Niedermeier M. Load introduction and coconnections[J]. Mechanics of Composite Materials, 2013, 11: 1 − 6.

    [71]

    Arkhurst B M, Seol J B, Lee Y S, et al. Interfacial structure and bonding mechanism of AZ31/carbon-fiber-reinforced plastic composites fabricated by thermal laser joining[J]. Composites Part B:Engineering, 2019, 167: 71 − 82. doi: 10.1016/j.compositesb.2018.12.002

    [72]

    Tan X, Zhang J, Shan J, et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel[J]. Composites Part B:Engineering, 2015, 70: 35 − 43.

    [73]

    Su J, Tan C, Wu Z, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics & Laser Technology, 2020, 124: 106006.1 − 106006.10.

    [74]

    Tan C, Su J, Zhu B, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics & Laser Technology, 2020, 129(3): 106273.

    [75]

    Sheng L Y, Jiao J K, Lai C. Assessment of the microstructure and mechanical properties of a laser-joined carbon fiber-reinforced thermosetting plastic and stainless steel[J]. Strength of Materials, 2018, 50(5): 752 − 63. doi: 10.1007/s11223-018-0020-8

    [76]

    Wang F, Jiao J, Wang Q, et al. A research on CFRP and stainless steel joining with fiber lasers[C]//International Congress on Applications of Lasers & Electro-Optics, 2015: 709-715.

    [77]

    Tao W, Su X, Chen Y, et al. Joint formation and fracture characteristics of laser welded CFRP/TC4 joints[J]. Journal of Manufacturing Processes, 2019, 45: 1 − 8. doi: 10.1016/j.jmapro.2019.05.028

    [78]

    Tan X , Zhang J , Shan J , et al. The damage characteristics and mechanism of CFRP during laser joining of CFRP/mild steel dissimilar joint[C]//International Congress on Applications of Lasers & Electro-Optics, 2013: 582-589.

    [79]

    Li Y, Bu H, Yang H, et al. Effect of laser heat input on the interface morphology during laser joining of CFRTP and 6061 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 50: 366 − 379. doi: 10.1016/j.jmapro.2019.12.023

    [80]

    Jiao J, Ye Y, Jia S, et al. CFRTP -Al alloy laser assisted joining with a high speed rotational welding technology[J]. Optics & Laser Technology, 2020, 127: 106187.1 − 106187.8.

    [81]

    Jiao J, Xu Z, Wang Q, et al. Research on carbon fiber reinforced thermal polymer/stainless steel laser direct joining[J]. Journal of Laser Applications, 2018, 30(3): 032419.1 − 032419.8.

    [82]

    Wang D, Xu J, Huang T, et al. Effect of beam shaping on laser joining of CFRP and Al-Li alloy[J]. Optics & Laser Technology, 2021, 143: 107336.1 − 107336.6.

    [83]

    Kawahito Y, Tange A, Kubota S, et al. Development of direct laser joining for metal and plastic[C]//International Congress on Applications of Lasers & Electro-Optics. Laser insititute of America, 2006:604.

    [84]

    Sheng L, Jiao J, Du B, et al. Influence of processing parameters on laser direct joining of CFRTP and stainless steel[J]. Advances in Materials Science and Engineering, 2018, 2530521: 1 − 15.

    [85]

    Amend P, Mallmann G, Roth S, et al. Process-structure-property relationship of laser-joined thermoplastic metal hybrids[J]. Journal of Laser Applications, 2016, 28(2): 022403.1 − 022403.6.

    [86]

    Klaus S, Martin S, Pierre B J, et al. Laser-based joining of thermoplastics to metals: influence of varied ambient conditions on joint performance and microstructure[J]. International Journal of Polymer Science, 2016, 2016: 1 − 9.

    [87]

    Jiao J, Wang Q, Wang F, et al. Numerical and experimental investigation on joining CFRTP and stainless steel using fiber lasers[J]. Journal of Materials Processing Technology, 2017, 240: 362 − 369. doi: 10.1016/j.jmatprotec.2016.10.013

    [88]

    Lambiase F, Genna S, Kant R. Optimization of laser-assisted joining through an integrated experimental-simulation approach[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 2655 − 2666. doi: 10.1007/s00170-018-2113-8

    [89] 王强, 焦俊科, 昝少平, 等. 接触热导率对CFRTP/不锈钢激光直接连接温度场的影响[J]. 中国激光, 2017, 4: 36 − 44.

    Wang Qiang, Jiao Junke, Zan Shaoping, et al. Effect of thermal contact conductanceon temperature field of CFRTP/stainless steel laser direct joining[J]. Chinese Journal of Lasers Chinese Edition, 2017, 4: 36 − 44.

    [90]

    Jiao J, Xu Z, Wang Q, et al. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization[J]. Optics & Laser Technology, 2018, 103: 170 − 176.

    [91]

    Wang H, Chen Y, Guo Z, et al. Porosity elimination in modified direct laser joining of Ti6Al4V and thermoplastics composites[J]. Applied Sciences, 2019, 9(3): 411.1 − 411.8.

    [92]

    Jiao J, Jia S, Xu Z, et al. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method[J]. Composites Part B:Engineering, 2019, 173: 106911.1 − 106911.7.

    [93]

    Sheng L Y, Wang F Y, Wang Q, et al. Shear strength optimization of laser-joined polyphenylene sulfide-based CFRTP and stainless steel[J]. Strength of Materials, 2018, 50(5): 824 − 831. doi: 10.1007/s11223-018-0028-0

    [94]

    Chen Y J, Yue T M, Guo Z N. Combined effects of temperature field and ultrasonic vibation on bubble motion in lasr joining of plastic to metal[J]. Journal of Materials Processing Technology, 2021, 288: 116846.1 − 116846.14.

    [95]

    Chen Y J, Yue T M, Guo Z N. Laser joining of metals to plastics with ultrasonic vibration[J]. Journal of Materials Processing Technology, 2017, 249: 441 − 451. doi: 10.1016/j.jmatprotec.2017.06.036

图(12)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-10-24

目录

/

返回文章
返回