Law of penetration and post-weld deformation of asymmetric fillet root welding
-
摘要: T形角接单侧开V形坡口的中厚板焊接具有成本低、生产效率高的特点,但这种焊缝两侧结构非对称,尤其根部结构厚度悬殊,焊接热传导差异大,不易有效保证良好全熔透成形,且焊后工件常伴随变形较大,影响后续安装使用. 为了获得非对称焊缝焊接热输入对熔透和变形的作用机制,提出考虑热输入大小和能量分配两个因素探讨对热传导规律的影响. 在温度场模拟中引入了等效双高斯热源模型,有效提升了计算精度. 采用数值模拟和试验相结合的方法,对熔透成形、应力场分布和焊件变形进行了对比分析. 结果表明,当焊接电流保持不变且焊枪角度为20°时,焊件变形量最大,焊接试件变形增加18%左右;当焊枪角度一定时,焊件变形量随焊接电流的逐渐增加而增大,最大变形量为2.595 2 mm. 相关研究揭示了非对称焊缝熔透和焊接变形规律,为此类非对称角根焊的焊接质量工艺参数优化提供理论支持.Abstract: Medium plate with T-fillet joints and one-side V-shaped grooves has the characteristics of low cost and high production efficiency. However, the two sides of the weld are asymmetrical, especially the thickness of the root structure is very different, and the welding heat conduction difference is uneven, so that the good full penetration forming is not easy to effectively guarantee, and the workpiece is often deformed after welding, which affects installation. In order to figure out the mechanism of welding heat conduction of asymmetric welding on penetration and welding deformation, the influence of energy distribution and the size of heat input on the heat conduction is considered. The equivalent Gauss heat source model is introduced in the temperature field simulation, which effectively improves the calculation accuracy. The method of simulation and experiment was used to analyze the penetration formation, stress field distribution and welding deformation comparatively. The results show that when the welding current is the same and the welding torch angle is 20°, the welding deformation is larger and the deformation of the base metal is increased by about 18%. When the welding torch angle is constant, the welding deformation increases with the increase of the welding current, and the maximum deformation is 2.595 2 mm. The relevant research reveals the law of asymmetric weld penetration and welding deformation, which provides theoretical support for the optimization of welding quality and process parameters of this kind of asymmetric fillet welding.
-
-
图 7 非对称角根焊焊接横截面熔池轮廓仿真
Figure 7. Simulation of weld pool profile in cross section of asymmetric angle root welding. (a) welding current 160 A,welding gun angle 20°;(b) welding current 180 A,welding gun angle 20°;(c) welding current 200 A,welding gun angle 20°;(d) welding current 160 A,welding gun angle 30°;(e) welding current 180 A,welding gun angle 30°;(f) welding current 200 A,welding gun angle 30°;(g) welding current 160 A,welding gun angle 40°;(h) welding current 180 A,welding gun angle 40°;(i) welding current 200 A,welding gun angle 40°
表 1 焊接工艺参数
Table 1 Welding process parameters
焊接电流
I/A焊枪角度
θ/(°)焊接速度
v/(mm·s−1)电弧电压
U/V氩气流量
Q/(L·min−1)送丝速度
vs/(mm·s−1)160, 180, 200 20, 30, 40 6 13.4 12 6 -
[1] Zhu J, Khurshid M, Barsoum Z. Accuracy of computational welding mechanics methods for estimation of angular distortion and residual stresses[J]. Welding in the World, 2019, 63(5): 1391 − 1405. doi: 10.1007/s40194-019-00746-9
[2] Wang R, Zhang J X, Liu C, et al. Welding distortion investigation in fillet welded joint and structure based on iterative substructure method[J]. Science & Technology of Welding & Joining, 2013, 14(5): 396 − 403.
[3] Deng Dean, Kiyoshima S. Numerical simulation of welding temperature field, residual stress and deformation induced by electro slag welding[J]. Computational Materials Science, 2012, 62: 23 − 34. doi: 10.1016/j.commatsci.2012.04.037
[4] Lee J M, Seo H D, Chuang H. Efficient welding distortion analysis method for large welded structures[J]. Journal of Materials Processing Technology, 2018, 256: 36 − 50. doi: 10.1016/j.jmatprotec.2018.01.043
[5] 朱志明, 符平坡, 杨中宇, 等. 电弧焊接数值模拟中热源模型的研究与发展[J]. 工程科学学报, 2018, 40(4): 389 − 396. Zhu Zhiming, Fu Pingpo, Yang Zhongyu, et al. Research and development of a heat-source model in numerical simulation for the arc welding process[J]. Chinese Journal of Engineering, 2018, 40(4): 389 − 396.
[6] Yue J, Dong X, Guo R, et al. Numerical simulation of equivalent heat source temperature field of asymmetrical fillet root welds[J]. International Journal of Heat and Mass Transfer, 2019, 130: 42 − 49. doi: 10.1016/j.ijheatmasstransfer.2018.10.075
[7] 胥国祥, 武传松, 秦国梁, 等. 铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析[J]. 金属学报, 2012, 48(9): 1033 − 1041. doi: 10.3724/SP.J.1037.2012.00174 Xu Guoxiang, Wu Chuansong, Qing Guoliang, et al. Finite element analysis of temperature fleld in Laser+GMAW hybrid welding for T-joint of aluminum alloy[J]. Acta Metallurgica Sinica, 2012, 48(9): 1033 − 1041. doi: 10.3724/SP.J.1037.2012.00174
[8] 杨建国, 周号, 雷靖, 等. 焊接应力与变形数值模拟领域的若干关键问题[J]. 焊接, 2014(3): 8 − 17. Yang Jianguo, Zhou Hao, Lei Jing, et al. Some key problems in the field of numerical simulation of welding stress and deformation[J]. Welding & Joining, 2014(3): 8 − 17.
[9] 郑乔, 逯世杰, 李索, 等. 熔敷顺序和管壁厚度对异种钢管板接头焊接残余应力与变形的影响[J]. 机械工程学报, 2019, 55(6): 46 − 53. doi: 10.3901/JME.2019.06.046 Zheng Qiao, Lu Shijie, Li Suo, et al. Influence of deposition sequence and thickness of tube on welding residual stress and deformation in dissimilar steel tube-block welded joint[J]. Journal of Mechanical Engineering, 2019, 55(6): 46 − 53. doi: 10.3901/JME.2019.06.046
[10] 王者昌. 焊接应力变形原理若干问题的探讨(二)[J]. 焊接学报, 2008, 29(7): 69 − 72. doi: 10.3321/j.issn:0253-360X.2008.07.018 Wang Zhechang. Discussion on principle of welding stress and distortion(2)[J]. Transactions of the China Welding Institution, 2008, 29(7): 69 − 72. doi: 10.3321/j.issn:0253-360X.2008.07.018
[11] Deng D, Luo Y, Serizawa H, et al. Numerical simulation of residual stress and deformation considering phase transformation effect[J]. Transactions of JWRI, 2003, 32(2): 325 − 333.