高级检索

非对称角根焊熔透和焊后变形的规律

岳建锋, 彭超龙, 刘文吉, 赵金涛, 李亮玉

岳建锋, 彭超龙, 刘文吉, 赵金涛, 李亮玉. 非对称角根焊熔透和焊后变形的规律[J]. 焊接学报, 2021, 42(7): 28-36. DOI: 10.12073/j.hjxb.20200903001
引用本文: 岳建锋, 彭超龙, 刘文吉, 赵金涛, 李亮玉. 非对称角根焊熔透和焊后变形的规律[J]. 焊接学报, 2021, 42(7): 28-36. DOI: 10.12073/j.hjxb.20200903001
YUE Jianfeng, PENG Chaolong, LIU Wenji, ZHAO Jintao, LI Liangyu. Law of penetration and post-weld deformation of asymmetric fillet root welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 28-36. DOI: 10.12073/j.hjxb.20200903001
Citation: YUE Jianfeng, PENG Chaolong, LIU Wenji, ZHAO Jintao, LI Liangyu. Law of penetration and post-weld deformation of asymmetric fillet root welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 28-36. DOI: 10.12073/j.hjxb.20200903001

非对称角根焊熔透和焊后变形的规律

基金项目: 国家自然科学基金资助项目(U1733125)
详细信息
    作者简介:

    岳建锋,博士,教授,博士研究生导师;主要研究方向为焊接自动化;Email:billyue@163.com.

  • 中图分类号: TG 404

Law of penetration and post-weld deformation of asymmetric fillet root welding

  • 摘要: T形角接单侧开V形坡口的中厚板焊接具有成本低、生产效率高的特点,但这种焊缝两侧结构非对称,尤其根部结构厚度悬殊,焊接热传导差异大,不易有效保证良好全熔透成形,且焊后工件常伴随变形较大,影响后续安装使用. 为了获得非对称焊缝焊接热输入对熔透和变形的作用机制,提出考虑热输入大小和能量分配两个因素探讨对热传导规律的影响. 在温度场模拟中引入了等效双高斯热源模型,有效提升了计算精度. 采用数值模拟和试验相结合的方法,对熔透成形、应力场分布和焊件变形进行了对比分析. 结果表明,当焊接电流保持不变且焊枪角度为20°时,焊件变形量最大,焊接试件变形增加18%左右;当焊枪角度一定时,焊件变形量随焊接电流的逐渐增加而增大,最大变形量为2.595 2 mm. 相关研究揭示了非对称焊缝熔透和焊接变形规律,为此类非对称角根焊的焊接质量工艺参数优化提供理论支持.
    Abstract: Medium plate with T-fillet joints and one-side V-shaped grooves has the characteristics of low cost and high production efficiency. However, the two sides of the weld are asymmetrical, especially the thickness of the root structure is very different, and the welding heat conduction difference is uneven, so that the good full penetration forming is not easy to effectively guarantee, and the workpiece is often deformed after welding, which affects installation. In order to figure out the mechanism of welding heat conduction of asymmetric welding on penetration and welding deformation, the influence of energy distribution and the size of heat input on the heat conduction is considered. The equivalent Gauss heat source model is introduced in the temperature field simulation, which effectively improves the calculation accuracy. The method of simulation and experiment was used to analyze the penetration formation, stress field distribution and welding deformation comparatively. The results show that when the welding current is the same and the welding torch angle is 20°, the welding deformation is larger and the deformation of the base metal is increased by about 18%. When the welding torch angle is constant, the welding deformation increases with the increase of the welding current, and the maximum deformation is 2.595 2 mm. The relevant research reveals the law of asymmetric weld penetration and welding deformation, which provides theoretical support for the optimization of welding quality and process parameters of this kind of asymmetric fillet welding.
  • 图  1   母材的整体示意图(mm)

    Figure  1.   Overall layouts of workpieces. (a) wing; (b) web

    图  2   焊接试件及夹具

    Figure  2.   Configuration of welding workpiece and fixture

    图  3   焊枪与焊缝两侧平面夹角示意图

    Figure  3.   Diagram of angle between welding torch and welding seam

    图  4   非对称角根焊有限元模型

    Figure  4.   Finite element model of the asymmetrical fillet welding

    图  5   焊接热输入分配分解示意图

    Figure  5.   Schematic diagram of welding heat input distribution decomposition

    图  6   不同温度下Q235低碳钢力学性能和热物理性能参数

    Figure  6.   Mechanical properties and thermophysical parameters of Q235 low carbon steel at different temperatures. (a) mechanical property parameters; (b) thermophysical property parameters

    图  7   非对称角根焊焊接横截面熔池轮廓仿真

    Figure  7.   Simulation of weld pool profile in cross section of asymmetric angle root welding. (a) welding current 160 A,welding gun angle 20°;(b) welding current 180 A,welding gun angle 20°;(c) welding current 200 A,welding gun angle 20°;(d) welding current 160 A,welding gun angle 30°;(e) welding current 180 A,welding gun angle 30°;(f) welding current 200 A,welding gun angle 30°;(g) welding current 160 A,welding gun angle 40°;(h) welding current 180 A,welding gun angle 40°;(i) welding current 200 A,welding gun angle 40°

    图  8   焊枪角度20°时非对称角根焊焊接横截面熔池实际轮廓

    Figure  8.   Actual profile of weld pool in the cross section of asymmetric angle root welding at welding gun angle 20°. (a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  9   焊枪角度30°时非对称角根焊焊接横截面熔池实际轮廓

    Figure  9.   Actual profile of weld pool in the cross section of asymmetric angle root welding at welding gun angle 30°.(a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  10   焊枪角度40°时非对称角根焊焊接横截面熔池实际轮廓

    Figure  10.   Actual profile of weld pool in the cross section of asymmetric angle root welding at welding gun angle 40°. (a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  11   非对称角根焊熔透深度试验及仿真对比

    Figure  11.   Experiment and simulation of the penetration depth of the asymmetric fillet welding

    图  12   焊接观察截面位置示意图

    Figure  12.   Schematic diagram of weld observation section position. (a) welding cross section; (b) enlarged view of the observed area

    图  13   各观察点热循环曲线

    Figure  13.   Thermal cycle curve of each observation point. (a) temperature at point A-E; (b) temperature at point a-e

    图  14   不同焊接时间下母材纵向残余应力分布

    Figure  14.   Residual stress distribution of workpieces with different welding time. (a) welding time t = 30 s; (b) welding time t = 60 s

    图  15   焊枪角度20°时不同焊接热输入条件下母材残余变形

    Figure  15.   Welding deformation of the asymmetric fillet at welding gun angle 20°. (a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  16   焊枪角度30°时不同焊接热输入条件下母材残余变形

    Figure  16.   Welding deformation of the asymmetric fillet at welding gun angle 30°. (a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  17   焊枪角度40°时不同焊接热输入条件下母材残余变形

    Figure  17.   Welding deformation of the asymmetric fillet at welding gun angle 40°. (a) welding current 160 A;(b) welding current 180 A;(c) welding current 200 A

    图  18   焊件三维扫描仪器

    Figure  18.   3D scanning instrument of weldment

    图  19   试验实测和仿真计算的变形量对比

    Figure  19.   Comparison of measured and simulated deformation

    表  1   焊接工艺参数

    Table  1   Welding process parameters

    焊接电流
    I/A
    焊枪角度
    θ/(°)
    焊接速度
    v/(mm·s−1)
    电弧电压
    U/V
    氩气流量
    Q/(L·min−1)
    送丝速度
    vs/(mm·s−1)
    160, 180, 20020, 30, 40613.4126
    下载: 导出CSV
  • [1]

    Zhu J, Khurshid M, Barsoum Z. Accuracy of computational welding mechanics methods for estimation of angular distortion and residual stresses[J]. Welding in the World, 2019, 63(5): 1391 − 1405. doi: 10.1007/s40194-019-00746-9

    [2]

    Wang R, Zhang J X, Liu C, et al. Welding distortion investigation in fillet welded joint and structure based on iterative substructure method[J]. Science & Technology of Welding & Joining, 2013, 14(5): 396 − 403.

    [3]

    Deng Dean, Kiyoshima S. Numerical simulation of welding temperature field, residual stress and deformation induced by electro slag welding[J]. Computational Materials Science, 2012, 62: 23 − 34. doi: 10.1016/j.commatsci.2012.04.037

    [4]

    Lee J M, Seo H D, Chuang H. Efficient welding distortion analysis method for large welded structures[J]. Journal of Materials Processing Technology, 2018, 256: 36 − 50. doi: 10.1016/j.jmatprotec.2018.01.043

    [5] 朱志明, 符平坡, 杨中宇, 等. 电弧焊接数值模拟中热源模型的研究与发展[J]. 工程科学学报, 2018, 40(4): 389 − 396.

    Zhu Zhiming, Fu Pingpo, Yang Zhongyu, et al. Research and development of a heat-source model in numerical simulation for the arc welding process[J]. Chinese Journal of Engineering, 2018, 40(4): 389 − 396.

    [6]

    Yue J, Dong X, Guo R, et al. Numerical simulation of equivalent heat source temperature field of asymmetrical fillet root welds[J]. International Journal of Heat and Mass Transfer, 2019, 130: 42 − 49. doi: 10.1016/j.ijheatmasstransfer.2018.10.075

    [7] 胥国祥, 武传松, 秦国梁, 等. 铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析[J]. 金属学报, 2012, 48(9): 1033 − 1041. doi: 10.3724/SP.J.1037.2012.00174

    Xu Guoxiang, Wu Chuansong, Qing Guoliang, et al. Finite element analysis of temperature fleld in Laser+GMAW hybrid welding for T-joint of aluminum alloy[J]. Acta Metallurgica Sinica, 2012, 48(9): 1033 − 1041. doi: 10.3724/SP.J.1037.2012.00174

    [8] 杨建国, 周号, 雷靖, 等. 焊接应力与变形数值模拟领域的若干关键问题[J]. 焊接, 2014(3): 8 − 17.

    Yang Jianguo, Zhou Hao, Lei Jing, et al. Some key problems in the field of numerical simulation of welding stress and deformation[J]. Welding & Joining, 2014(3): 8 − 17.

    [9] 郑乔, 逯世杰, 李索, 等. 熔敷顺序和管壁厚度对异种钢管板接头焊接残余应力与变形的影响[J]. 机械工程学报, 2019, 55(6): 46 − 53. doi: 10.3901/JME.2019.06.046

    Zheng Qiao, Lu Shijie, Li Suo, et al. Influence of deposition sequence and thickness of tube on welding residual stress and deformation in dissimilar steel tube-block welded joint[J]. Journal of Mechanical Engineering, 2019, 55(6): 46 − 53. doi: 10.3901/JME.2019.06.046

    [10] 王者昌. 焊接应力变形原理若干问题的探讨(二)[J]. 焊接学报, 2008, 29(7): 69 − 72. doi: 10.3321/j.issn:0253-360X.2008.07.018

    Wang Zhechang. Discussion on principle of welding stress and distortion(2)[J]. Transactions of the China Welding Institution, 2008, 29(7): 69 − 72. doi: 10.3321/j.issn:0253-360X.2008.07.018

    [11]

    Deng D, Luo Y, Serizawa H, et al. Numerical simulation of residual stress and deformation considering phase transformation effect[J]. Transactions of JWRI, 2003, 32(2): 325 − 333.

图(19)  /  表(1)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  15
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 网络出版日期:  2021-08-30
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回