高级检索

基于焊缝高熵化的TA2与0Cr18Ni9板材TIG焊分析

翟秋亚, 刘帅宾, 田甜, 徐锦锋, 叶建林

翟秋亚, 刘帅宾, 田甜, 徐锦锋, 叶建林. 基于焊缝高熵化的TA2与0Cr18Ni9板材TIG焊分析[J]. 焊接学报, 2021, 42(4): 79-83. DOI: 10.12073/j.hjxb.20200830003
引用本文: 翟秋亚, 刘帅宾, 田甜, 徐锦锋, 叶建林. 基于焊缝高熵化的TA2与0Cr18Ni9板材TIG焊分析[J]. 焊接学报, 2021, 42(4): 79-83. DOI: 10.12073/j.hjxb.20200830003
ZHAI Qiuya, LIU Shuaibin, TIAN Tian, XU Jinfeng, YE Jianlin. Analysis on TIG welding of TA2 and 0Cr18Ni9 plate based on high entropy of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 79-83. DOI: 10.12073/j.hjxb.20200830003
Citation: ZHAI Qiuya, LIU Shuaibin, TIAN Tian, XU Jinfeng, YE Jianlin. Analysis on TIG welding of TA2 and 0Cr18Ni9 plate based on high entropy of weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 79-83. DOI: 10.12073/j.hjxb.20200830003

基于焊缝高熵化的TA2与0Cr18Ni9板材TIG焊分析

基金项目: 陕西省自然科学基金重点项目(2018JZ5016);西安市高校院所人才服务企业工程计划(GR17068).
详细信息
    作者简介:

    翟秋亚,博士,教授;主要从事凝固技术与难熔难焊金属焊接研究;Email:qiuyazhai@xaut.edu.cn

  • 中图分类号: TG453+.9

Analysis on TIG welding of TA2 and 0Cr18Ni9 plate based on high entropy of weld

  • 摘要: 针对钛/钢焊接难,焊缝易产生金属间化合物导致接头力学性能不良等问题,依据焊缝金属高熵化技术思路,通过基于密度泛函理论的热力学第一性原理设计并制备出塑韧性良好的多主元Ti10Fe29Ni32Cu22V7合金作为焊材,用于TA2/0Cr18Ni9薄板的TIG焊接. 结果表明,使用Ti10Fe29Ni32Cu22V7焊材熔焊钛/钢,所得焊接接头形貌完整,无明显焊接缺陷,焊缝金属与母材结合性良好. 焊缝中心组织则由等轴晶组成,熔合区组织以柱状晶为特征,这些晶体均具有简单立方固溶体结构,有效避免了TiFe2,TiFe金属间化合物的形成,接头抗拉强度达到205 MPa.
    Abstract: In order to solve the problem of poor mechanical properties of joint caused by intermetallic compounds in the welding seam of titanium/steel, according to the high entropy technology of weld metal, the multi-component Ti10Fe29Ni32Cu22V7 alloy with good plasticity and toughness was designed and prepared according to the first principles of thermodynamics based on density functional theory, which was used for TIG welding of TA2/0Cr18Ni9 sheet. The results show that: using Ti10Fe29Ni32Cu22V7 welding material for fusion welding titanium/steel, the welding joint morphology is complete, no obvious welding defects, and the bonding between weld metal and base metal is good. The microstructure of the weld center is composed of equiaxed grains, and the microstructure of the fusion zone is characterized by columnar crystals. These crystals have a simple cubic solid solution structure, which effectively avoids the formation of intermetallic compounds. The tensile strength of the joint is high, up to 205 MPa.
  • 图  1   TA2/0Cr18Ni9焊缝的XRD图谱

    Figure  1.   X-ray pattern of weld in the the joint of TA2/0Cr18Ni9

    图  2   用Ti10Fe29Ni32Cu22V7 TIG焊TA2/0Cr18Ni9获得的接头组织

    Figure  2.   Microstructure of the TA2/0Cr18Ni9 TIG welding joint by using Ti10Fe29Ni32Cu22V7 alloy. (a) morphology of TA2/0Cr18Ni9 joint; (b) weld near 0Cr18Ni9; (c) center of the weld; (d) weld near TA2

    图  3   TIG焊TA2/0Cr18Ni9焊缝中心组织及EDS测点位置

    Figure  3.   Microstructure and measuring points of weld center of TA2/0Cr18Ni9 GTAW

    图  4   TA2/0Cr18Ni9 TIG焊焊缝线扫描图

    Figure  4.   Line scanning position spectrums of weld metal of TA2/0Cr18Ni9 GTAW. (a) line scanning position; (b) distribution of elements

    图  5   TA2/0Cr18Ni9接头的硬度分布

    Figure  5.   Hardness distribution of TA2/0Cr18Ni9 joint

    图  6   TA2/0Cr18Ni9 TIG焊接接头拉伸断口形貌(TA2侧)

    Figure  6.   The tensile fracture morphology of the joint near TA2 of TA2/0Cr18Ni9 GTAW

    表  1   钛/钢TIG焊工艺参数

    Table  1   The parameters of GTAW titanium and steel

    焊接电流I/A焊接速度v/(mm·min−1)氩气流量Q/(L·min−1)喷嘴直径D1/mm钨极直径D2/mm焊丝伸出长度L/mm滞后断气时间t/s
    60~8060~10012~151034~63~5
    下载: 导出CSV

    表  2   主元原子半径差、混合焓、混合熵及Ω值

    Table  2   The atomic radius difference, enthalpy of mixing, entropy of mixing and Ω value of main elements

    Ti含量
    (原子分数, %)
    原子半径差
    δ(%)
    混合焓
    ΔHmix/
    (kJ·mol−1)
    混合熵
    ΔSmix/
    (J·K−1·mol−1)
    Ω[13]
    x =5 3.44 −2.02 11.74 9.94
    x = 8 4.04 −4.26 12.09 4.87
    x = 10 4.37 −5.67 12.26 3.73
    x = 12 4.65 −7.01 12.39 3.05
    x = 14 4.91 −8.29 12.50 2.61
    下载: 导出CSV

    表  3   高熵合金Tix[Fe32Ni36Cu24V8]100−x的弹性系数

    Table  3   Elastic constants of high entropy alloys Tix[Fe32Ni36Cu24V8]100−x

    Ti含量(原子分数, %)C11/GPaC12/GPaC44/GPa体模量B/GPa剪切模量G/GPa弹性模量E/GPaG/B泊松比v
    x = 5 341.063 245.170 8 133.511 2 277.134 8 88.593 4 240.186 2 0.319 7 0.355 6
    x = 8 321.095 2 236.841 4 127.855 6 264.926 0 82.023 3 223.050 5 0.309 6 0.359 7
    x = 10 309.095 5 240.039 4 127.524 2 263.058 1 75.856 9 207.614 5 0.288 36 0.368 5
    x = 12 313.276 3 238.929 3 130.254 7 263.711 6 79.049 0 215.604 2 0.299 8 0.363 7
    x = 14 303.651 4 227.615 124.976 2 252.960 5 77.728 9 211.521 5 0.307 3 0.360 6
    注:C11, C12, C44为理论计算出的弹性系数
    下载: 导出CSV

    表  4   TIG焊TA2/0Cr8Ni9焊缝中心EDS测试结果(原子分数,%)

    Table  4   EDS results of weld center of TA2/0Cr18Ni9 GTAW

    位置TiFeNiCuV
    130.5736.0721.455.446.47
    227.3639.6918.926.317.72
    343.0421.9220.589.215.26
    下载: 导出CSV
  • [1] 刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77 − 94.

    Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace field[J]. Journal of Aeronautical Materials, 2020, 40(3): 77 − 94.

    [2]

    Chu Q L, Zhang M, Li J H, et al. Experimental investigation of explosion-welded CP-Ti/Q345 bimetallic sheet filled with Cu/V based flux-cored wire[J]. Materials & Design, 2015, 67: 606 − 614.

    [3]

    Chu Qiaoling, Zhang Min, Li Jihong, et al. Influence of vanadium filler on the properties of titanium and steel TIG welded joints[J]. Journal of Materials Processing Technology, 2017(240): 293 − 304.

    [4] 张鹏贤, 李世龙. 铬、铌、钒金属粉末为过渡层的钛/钢电阻钎焊研究[J]. 热加工工艺, 2018, 47(21): 53 − 56.

    Zhang Pengxian, Li Shilong. Resistance brazing of titanium/steel using Cr, Nb, V metal powder as transition layer[J]. Hot Working Technology, 2018, 47(21): 53 − 56.

    [5] 邓云华, 岳喜山, 李晓辉, 等. TC4钛合金/304不锈钢异种材料蜂窝结构钎焊工艺[J]. 焊接学报, 2019, 40(10): 148 − 155.

    Deng Yunhua, Yue Xishan, Li Xiaohui, et al. Brazing process of TC4 titanium/304 stainless steel dissimilar materials honeycomb sandwich structure[J]. Transactions of the China Welding Institution, 2019, 40(10): 148 − 155.

    [6] 刘夫, 李士凯, 蒋鹏, 等. 钛/钢异种金属焊接技术的研究进展[J]. 材料开发与应用, 2020, 35(2): 67 − 74.

    Liu Fu, Li Shikai, Jiang Peng, et al. Development progress of welding technologies of titanium/steel dissimilar metal[J]. Development and Application of Materials, 2020, 35(2): 67 − 74.

    [7]

    Zhao B, Jian D, Ma L, et al. Precipitation of intermetallic compounds in brazing of titanium and steel using brass filler[J]. Journal of Materials Processing Technology, 2020, 285: 116730. doi: 10.1016/j.jmatprotec.2020.116730

    [8]

    Y Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299 − 303. doi: 10.1002/adem.200300567

    [9] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(S2): 356 − 359.

    Wang Lanxin, Yao Shan, Wen Bin. First-principle studies of AlFexTiCrZnCu high entropy alloys with the different mole fractions of Fe[J]. Materials Reports, 2019, 33(S2): 356 − 359.

    [10]

    Yong Z, Yun J Z, Jun P L, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2010, 10(6): 534 − 538.

    [11]

    Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry & Physics, 2012, 132(2-3): 233 − 238.

    [12]

    Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10): 645 − 647.

    [13] 翟秋亚, 刘帅宾, 杨全虎, 等. Ta1/0Cr18Ni9薄板储能焊熔核高熵化机理[J]. 焊接学报, 2020, 41(8): 79 − 84.

    Zhai Qiuya, Liu Shuaibin, Yang Quanhu, et al. High entropy mechanism of nugget in Ta1/0Cr18Ni9 sheet energy storage welding[J]. Thansactions of the China Welding Institution, 2020, 41(8): 79 − 84.

    [14]

    Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817 − 2829. doi: 10.2320/matertrans.46.2817

  • 期刊类型引用(5)

    1. 冯栋,周卫涛,颉文峰. 焊接工艺对薄壁环形钛合金焊缝成形及承载能力的影响. 焊接. 2023(04): 55-59 . 百度学术
    2. 乔永丰,雷玉成,姚奕强,王泽宇,朱强. 焊接方法对316L不锈钢焊缝抗辐照损伤性能的影响. 焊接学报. 2023(05): 77-83+94+133-134 . 本站查看
    3. 马寅,韩晓辉,李刚卿,杨志斌,宋东哲,靳月强. TC4钛合金激光-MIG复合焊接头组织性能. 电焊机. 2023(08): 93-97+114 . 百度学术
    4. 曾俊谚,庄园,杨涛,钟玉婷,杨响明. 基于飞秒激光的钛合金表面微纳米结构制备及腐蚀行为. 焊接. 2023(08): 37-43 . 百度学术
    5. 孙修圣. 钛管道K-TIG深熔焊工艺研究及应用. 压力容器. 2023(09): 23-30 . 百度学术

    其他类型引用(5)

图(6)  /  表(4)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  20
  • PDF下载量:  26
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-08-29
  • 网络出版日期:  2021-04-18
  • 刊出日期:  2021-04-24

目录

    /

    返回文章
    返回