高级检索

高压干法X65管线钢GMAW焊接接头在模拟海水中的腐蚀行为

张忠明, 薛龙, 李齐龙, 黄继强, 徐春杰

张忠明, 薛龙, 李齐龙, 黄继强, 徐春杰. 高压干法X65管线钢GMAW焊接接头在模拟海水中的腐蚀行为[J]. 焊接学报, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001
引用本文: 张忠明, 薛龙, 李齐龙, 黄继强, 徐春杰. 高压干法X65管线钢GMAW焊接接头在模拟海水中的腐蚀行为[J]. 焊接学报, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001
ZHANG Zhongming, XUE Long, LI Qilong, HUANG Jiqiang, XU Chunjie. Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001
Citation: ZHANG Zhongming, XUE Long, LI Qilong, HUANG Jiqiang, XU Chunjie. Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(5): 45-50. DOI: 10.12073/j.hjxb.20200824001

高压干法X65管线钢GMAW焊接接头在模拟海水中的腐蚀行为

基金项目: 国家自然科学基金资助项目(51275051);北京市自然科学基金—北京市教委联合资助项目(KZ20180017022);光机电装备技术北京市重点实验室开放课题(KF2013-01).
详细信息
    作者简介:

    张忠明,博士,教授;主要研究方向为先进材料制备及成形技术;Email:zmzhang@xaut.edu.cn.

    通讯作者:

    黄继强,副教授. Email:huangjiqiang@bipt.edu.cn.

  • 中图分类号: TG 444+.72

Corrosion behavior of X65 pipeline steel welded joints by hyperbaric GMAW in simulated seawater

  • 摘要: 高压干法熔化极气体保护焊(简称GMAW)在海底油气管道等水下构件的组装和维修中有着非常广泛的应用,焊接接头在海水中的腐蚀行为对于海底输油管道的安全运行至关重要.通过模拟浸泡试验和极化曲线法研究不同环境压力下(常压,0.3 MPa,0.5 MPa) X65管线钢干法GMAW焊接接头在人工海水中的腐蚀行为及机理. 结果表明,与焊缝和母材相比,热影响区的耐蚀性最差,且环境压力对焊接接头的腐蚀性能影响不明显. X65管线钢干法GMAW焊接接头在人工海水中的腐蚀形式以点蚀为主,在浸泡后期出现严重的局部腐蚀;腐蚀产物由FeOOH,Fe2O3,Fe3O4组成,腐蚀产物层在浸泡初期起到减缓金属腐蚀的作用,但随着浸泡时间延长,腐蚀产物层的致密性降低,其下的金属接头容易遭受到Cl的破坏,使局部腐蚀过程加剧.
    Abstract: Hyperbaric dry GMAW is widely employed commercially in the fabrication and maintenance of submarine oil and gas pipelines. The corrosion behaviors of welded joint in seawater are therefore of utmost importance in security operation of the pipelines. The corrosion performance and mechanism of X65 pipeline steel welded joints by hyperbaric GMAW under different ambient pressures (0.1, 0.3, 0.5 MPa) were studied by polarization curves and immersion simulation experiments in artificial seawater. It was found that compared with the welding base metal and welded zone, the corrosion resistance of heat affected zone is the worst, and the ambient pressure has little effect on the corrosion resistance of the welded joint. Corrosion morphology and corrosion product shows that pitting corrosion is the main corrosion form for the welded joints, and serious local pitting corrosion occurs at the late immersion stage. The corrosion product is composed of FeOOH, Fe2O3 and Fe3O4. The corrosion product on the surface of the welded joints can mitigate the corrosion at the initial immersion stage. With prolonged immersion durations, the compactness of the corrosion products layer reduces, the metal under the layer is vulnerable to the corrosion by Cl, and thus the local pitting corrosion process is promoted.
  • 新能源汽车是国家战略新兴产业之一. 动力电池是新能源汽车的“发动机”,直接关系到新能源汽车的行驶里程及安全性. 动力电池由大量的电芯连接而成,对于具有较高能量密度的锂电芯,极耳通常是铝和铜. 电池芯极耳与极耳、极耳与汇流排等结构之间必须通过牢靠的焊接技术连接起来[1]. 然而,铝和铜的热性、热膨胀系数和熔点等物理化学性能差异较大,传统的焊接方法难以实现铝和铜的有效焊接[2].

    铝/铜异种材料焊接方法主要有钎焊、熔钎焊、超声波焊、搅拌摩擦焊、摩擦焊、磁脉冲焊接和熔焊等. 钎焊和熔钎焊方法虽然可以实现铝/铜异种金属的连接,但钎焊接头的强度相对较低,与其他焊接接头相比,其承载能力较弱. 其次,钎焊过程需要额外使用钎剂,增加了成本和复杂性[3-4]. 熔钎焊缝界面处易出现过厚的IMC,进而恶化接头性能[5].虽然超声波焊、搅拌摩擦焊和摩擦焊等固相焊具有热输入极小的优势,但对于动力电池极耳结构高效连接并不合适. 与固相焊接相比,熔焊具有多功能、高速度和高柔性的显著优势. 激光作为一种焊接热源,能量密度高,可调性好,新型激光技术层出不穷. 因而,激光焊成为铝/铜异种金属优质高效熔焊的重要方法[6]. Lerra等人[7]采用脉冲激光对厚度为0.45 mm的铝板和厚度为0.3 mm的铜板进行焊接,对比了不同激光脉冲能量、脉冲间距和脉冲形状对接头力学性能的影响. Dimatteo等人[8]研究了激光束焦距对厚度为0.45 mm铝板和0.3 mm铜板激光焊的影响,结果表明,较小的光斑直径可以产生穿透深度控制较好的焊缝. Li等人[9]采用可调环模激光对厚度为0.5 mm铝板和铜板搭接焊缝进行搭接焊,发现通过调整激光模式可以有效促进铝和铜界面的温度均匀化,优化焊接过程中的元素混合和IMC分布,从而提高接头的抗剪强度. Du等人[10]对厚度为0.2 mm的铝板和铜板采用连续波光纤激光器进行激光螺旋点焊,发现空间功率调制能有效控制接头中的中间金属化合物,从而提高异种金属接头的抗拉强度.

    目前的研究对象主要为厚度为1 mm以下的铜板与铝板,鲜见毫米级板厚铜板与铝板的连接,这是因为常规红外激光焊接铝或铜等高反射金属时激光能量的吸收率低[11]. 与红外激光相比,短波长蓝激光辐照下铝和铜材料对激光能量的吸收率得到显著提升,特别是铜板对蓝激光的吸收率高达60%[12]. 近年来,铝和铜的蓝激光焊接得到了国内外学者的极大关注. Zapico等人[13]采用1.5 kW蓝激光高速焊接铜上铝下搭接接头,发现与红外激光焊接相比,蓝激光焊接工艺窗口明显增大. Tang等人[14]采用2000 W蓝激光器焊接厚度为2 mm的铜板和铝板实现了从热传导模式焊接到锁孔焊接的加工过程. 提高了铜焊接工艺的可控性和焊接过程的稳定性. 然而,蓝激光器的设备成本远高于红外激光器[15]. 为解决红外激光的能量吸收率低、过程不稳定性以及蓝光激光成本较高等问题,研究人员提出了常规红外激光与新型蓝光激光复合的方案,为高反射材料的激光加工提供了理想条件. Yang等人[16]使用红外—蓝激光对铜板进行焊接,发现与单一光源相比,红外—蓝激光复合焊接的光纤激光吸收率可以提高20%. Wu等人[17]采用同轴复合红外—蓝激光对厚度为0.5 mm的铜片进行焊接,发现蓝激光的加入提高并稳定了红外激光在同轴复合焊接中的能量效率.

    文中采用红外—蓝激光复合激光对铝/铜搭接接头进行焊接试验,深入分析了接头熔合区显微组织和物相成分以及接头力学性能. 为动力电池铝/铜接头高质量连接提供技术支撑.

    试验材料为5052铝合金与T2紫铜,板料尺寸均为50 mm × 30 mm × 1 mm,其化学成分,如表1所示. 焊前用丙酮对样品待焊表面进行清洗去除油污,并用纳秒激光去除铝板表面氧化膜. 将铝板和铜板组合后用夹具夹紧进行激光搭接焊.

    表  1  5052铝合金和T2紫铜化学成分(质量分数,%)
    Table  1.  Chemical compositions of 5052 aluminum and T2 copper
    SiFeBiMnMgNiCrZnCuAl
    0.25000.43000.00090.13002.51000.00130.21000.11000.12余量
    0.00430.00320.00080.00160.00190.00280.00360.0054余量0.0094
    下载: 导出CSV 
    | 显示表格

    试验采用BLF-455-800蓝激光半导体激光器和DK-YSM 3000红外激光器,蓝激光半导体激光器最大输出功率为800 W,中心波长为445 ~ 465 nm,红外激光器最大输出功率为3000 W,中心波长为1070 ~ 1090 nm. 采用同轴摆动复合焊接头,将蓝激光和红外激光同轴组合得到复合光斑. 蓝激光斑直径为2 mm,红外激光光斑直径为0.8 mm,其中红外激光通过振镜实现圆形摆动. 焊接头倾斜15°进行焊接. 焊接过程中,采用氩气对熔池进行保护. 同轴复合红外—蓝激光焊接系统示意图,如图1所示. 而激光焊接工艺参数中保护气体流量为20 L/min,红外激光振荡频率为60 Hz,红外激光振荡幅度为0.5 mm. 其他工艺参数如表2所示.

    图  1  试验装置示意图
    Figure  1.  Schematic diagram of the experimental setup
    表  2  激光焊接工艺参数
    Table  2.  Parameters for laser welding
    红外激光功率
    PR/W
    蓝激光功率
    PB/W
    焊接速度
    v/(m·min−1)
    离焦量
    Df /mm
    1050 0 3.6 −1
    1050 300 3.6 −1
    1050 500 3.6 −1
    1050 800 3.6 −1
    下载: 导出CSV 
    | 显示表格

    采用LEICA S9i体视镜对焊缝宏观形貌和焊接接头的横截面形貌进行拍摄. 对线切割试样打磨抛光,并用凯勒试剂腐蚀后干燥,使用配备能谱仪(energy dispersive spectrometer,EDS)的FEI Quanta 200扫描电子显微镜( scanning electron microscope,SEM)分析界面主要物相分布及含量;采用D500型X射线衍射仪(X-ray diffractometer ,XRD)对焊接接头进行物相分析;采用半自动维氏硬度计沿纵向对焊接接头横截面进行硬度分布测量,试验载荷为19.6 N,保荷时间为10 s,每个试件测量3次硬度,取平均值;根据国家标准GB/T 2651-2008《焊接接头拉伸试验方法》,采用CMT5205单柱式微机控制电子万能试验机进行焊接接头的拉伸试验,每个试件测量3次,取平均值,测试加载速度为0.03 mm/min,拉伸试样尺寸如图2所示.

    图  2  拉伸试样示意图(mm)
    Figure  2.  Schematic diagram of tensile specimen

    不同蓝激光功率时接头表面成形、焊缝截面形状,如图3所示. 焊缝中铝和铜熔化的面积,如图4所示. 铝/铜搭接接头焊缝表面成形良好,未见明显缺陷,但焊缝表面鱼鳞纹特征随着蓝激光功率增大逐渐不明显. 当蓝激光功率较大(800 W)时,焊缝表面出现裂纹. 由于红外激光存在光束振荡,使得焊缝横截面熔深存在波动变化. 此外,随着蓝激光功率的增加,铝板和铜板的熔化面积逐渐增大,如图4所示. 综上所述,蓝激光功率对焊缝中铝和铜熔化的面积具有显著的影响,需要严格控制蓝激光功率以避免过高焊接热输入,从而导致大量Al-Cu IMC生成.

    图  3  焊缝表面形貌和横截面形貌
    Figure  3.  Morphologies of weld surface appearances and cross-section. (a) 0 W; (b) 300 W; (c) 500 W; (d) 800 W
    图  4  焊缝中铝和铜熔化的面积
    Figure  4.  Areas of fused aluminum and copper in the weld seam

    不同蓝激光功率下铝/铜搭接接头SEM和EDS分析,如图5所示. 图5中接头EDS点扫描分析结果,如表3所示. 由图5可知,下方铜板中的铜元素在上方铝板焊缝区域的分布较广,上方铝板中的铝元素同样广泛分布于下方铜板焊缝区域,表明在激光加热熔化后铝和铜有较显著的流动及扩散过程. 值得一提的是,红外激光在铝元素与铜元素对流扩散过程中起着主导作用.

    图  5  不同蓝激光功率下的接头界面显微组织
    Figure  5.  Microstructures for the joints interface under different blue laser powers. (a) 0 W; (b) 300 W; (c) 500 W; (d) 800 W
    表  3  图5中标记区域的EDS分析结果
    Table  3.  EDS analysis results of the marked region in Fig.5
    测量点 元素含量(原子分数, %) 物相
    Al Cu
    1 95.65 4.35 Al/Cu共晶组织
    2 82.34 17.66 α-Al + Al2Cu
    3 69.01 30.99 θ-Al2Cu
    4 34.43 65.57 ϒ2-Al4Cu9
    5 6.70 93.30 Cu
    6 90.14 9.86 Al/Cu共晶组织
    7 82.59 17.41 α-Al + Al2Cu
    8 65.27 34.73 θ-Al2Cu
    9 54.78 45.21 AlCu
    10 20.69 79.30 ϒ2-Al4Cu9
    11 15.26 84.73 Cu
    12 94.56 5.44 Al/Cu共晶组织
    13 82.28 17.20 α-Al + Al2Cu
    14 76.51 23.49 α-Al + Al2Cu
    15 59.39 40.61 θ-Al2Cu
    16 33.97 66.03 ϒ2-Al4Cu9
    17 5.30 94.70 Cu
    18 73.00 27.00 α-Al + Al2Cu
    19 58.67 41.33 θ-Al2Cu
    20 29.78 70.22 ϒ2-Al4Cu9
    21 20.40 79.60 Cu
    下载: 导出CSV 
    | 显示表格

    当仅红外激光功率为1050 W时,下方铜板的铜元素向上方铝板的对流扩散十分显著,特别在焊缝横截面两侧铜元素的向上扩散高度约为铝板厚度的一半,如图5(a)所示. 由表3中点4至点1的EDS点扫描分析结果发现,从图5(a)的铜侧到铝侧方向上依次生成ϒ2-Al4Cu9相、锯齿状θ-Al2Cu相、α-Al + Al2Cu共晶组织和蠕虫状的Al/Cu共晶组织[18].

    保持红外激光功率为1050 W,当蓝激光功率由0 W增加到300 W时,红外—蓝激光复合焊总激光功率增加,但下方铜板熔化金属向上对流的熔体体积较大,如图5(b)所示. 表明红外—蓝激光复合焊时,下方铜板的铜元素向上方铝板的对流扩散强度减弱,熔融铜与熔融铝混合程度降低. 由表3中点10至点6的EDS点扫描分析发现,从图5(b)的铜侧到铝侧方向依次形成ϒ2-Al4Cu9相、AlCu相、锯齿状θ-Al2Cu相、α-Al + Al2Cu共晶组织和蠕虫状的Al/Cu共晶组织.

    随着蓝激光功率增加到500 W,下方铜板熔化金属向上对流的熔体体积变小,如图5(c)所示. 表明熔融铜与熔融铝混合较充分. 由表3中点16至点12的EDS点扫分析发现,从图5(c)的铜侧到铝侧方向依次形成ϒ2-Al4Cu9相、θ-Al2Cu相、α-Al + Al2Cu共晶组织和蠕虫状的Al/Cu共晶组织.

    当蓝激光功率为800 W时,下方铜板熔化金属向上对流的熔体体积大量消失,如图5(d)所示. 表明大量熔融铜与熔融铝充分混合. 由表3中点20至点18的EDS点扫分析发现,从图5(d)的铜侧向铝侧的方向依次形成Al4Cu9相、锯齿状θ-Al2Cu相、α-Al + Al2Cu共晶组织. 在图5(d)中接头界面处还发现了裂纹,这可能是铜和铝之间的热膨胀系数不匹配导致的. 此外,结合文献[19]可以认为Al-Cu IMC的高硬度减弱了接头的韧性,进而增强了接头的裂纹敏感性.

    当红外激光功率为1050 W时,下方铜板的铜元素向上方铝板的对流扩散强度较高. 而当蓝激光功率由0W增加到300 W和500 W时,对流扩散强度减缓,两种金属之间的混合仅限于铝板和铜板的一小部分. 而进一步增大蓝激光功率会导致激光总功率增加,发生过焊,使得熔池对流扩散程度增大,生成了大量Al-Cu IMC,进而导致接头界面出现了裂纹等缺陷.

    为进一步确定接头界面处Al-Cu IMC的分布情况,对接头横截面进行XRD物相分析,如图6所示. 除铝和铜相以外,还存在Al2Cu相、Al4Cu9相和AlCu相,其中Al2Cu相是几种工艺参数条件下焊接接头界面层主要物相. 这主要是在焊接过程中,接头中由于铜原子向铝基体内部进行扩散,Al2Cu相对较低的生成能,率先在界面初始部分形成Al2Cu相. 熔池内部靠近铜侧界面处铜原子与Al2Cu相进一步反应生成Al4Cu9相,这与前述接头EDS分析结果相吻合. 同时,结合文献[20]可以认为焊接的冷却过程较快、元素扩散不充分等,是导致少量的AlCu等亚稳定的中间过渡相生成的原因. 此外,Al2Cu相的衍射峰强度随着蓝激光功率的增加而增强,结合文献[21]可以认为,原因是更多的铜被熔化并扩散到熔池中,与熔融的铝反应并消耗掉,在熔池凝固前形成更多的Al2Cu.

    图  6  铝/铜激光焊接头的XRD
    Figure  6.  XRD of Al/Cu dissimilar joints

    沿纵向对试件焊接接头横截面进行硬度分布测量,不同蓝激光功率下铝/铜激光焊接头纵向硬度分布,如图7所示. 硬度值从铝侧到界面处逐渐升高,而从界面处到铜母材处又呈现出逐渐下降的趋势,最大值出现在界面处,结合文献[22]可以认为,此处存在大量的Al-Cu IMC. 当仅红外激光功率为1050 W时,界面处的硬度值较大,可达406 HV的最高硬度. 当红外光束激光功率为1050 W,蓝激光功率为300 W和500 W时,界面处的硬度值低于仅红外激光焊接. 这可能是由于蓝激光对熔池金属的混合程度具有稳定作用,减少了两种材料液熔融状态下的冶金反应,从而有效抑制了脆硬Al-Cu IMC的形成. 随着蓝激光功率逐渐增加,界面处的硬度值逐渐增大. 当蓝激光功率为800 W时,界面处硬度值最大,最高可达498 HV,这是由于进一步增大蓝激光功率会导致焊接激光总功率进一步增加,发生过焊,熔融铝与熔融铜的反应程度越剧烈,从而导致在熔合区形成的Al-Cu IMC越多. 此外,当蓝激光功率较小时,红外—蓝激光复合焊缝上方铝侧熔合区的硬度值与纯红外激光的相当;但当蓝激光功率较大(800 W)时,焊缝上方铝侧熔合区的硬度值存在较大的提升,究其原因是下方铜板的铜元素向上方铝板的对流扩散过于剧烈,导致在铝侧生成较多Al-Cu IMC.

    图  7  接头纵向硬度分布
    Figure  7.  Hardness distribution of joints

    不同蓝激光功率下铝/铜激光焊接头的载荷—位移曲线,如图8所示. 剪切试样断裂位置,如图9所示. 当红外激光功率为1050 W,蓝激光功率分别为0 W,300 W和500 W时,图9(a)、图9(b)和图9(c)中拉伸试样断裂在上层铝板与母材金属的相邻处. 而当蓝激光功率增加到800 W时,图9(d)中试样从铝/铜界面处剥离,结合文献[23]可以认为,原因是上下板搭接界面存在大量裂纹和Al-Cu IMC. 在图9(b)和图9(c)中,蓝激光功率为300 W和500 W时,试样在断裂位置出现了颈缩现象.

    图  8  接头的载荷-位移曲线
    Figure  8.  Load-displacement curves of welded joint

    不同蓝激光功率下铝/铜激光焊断口形貌,如图10所示. 图10分别为与图9对应的断口形貌. 仅红外激光功率为1050 W时,图10(a)中断口表面存在撕裂棱和典型的河流花样,接头最大抗剪切力为633.11 N;当红外光束激光功率为1050 W,蓝激光功率为300 W和500 W时,在图10(b)和图10(c)中断口处均存在若干韧窝,接头最大抗剪切力分别为795.51 N,649.21 N. 与仅红外激光相比,接头强度最大提升25.7%. 当蓝激光功率较大(800 W)时,图10(d)中断口表面呈颗粒状,呈沿晶断裂特征,接头处存在大量裂纹,接头最大抗剪切力最小,仅375.08 N. 在一定的蓝激光功率范围内,红外—蓝激光复合焊能有效提高焊接接头力学性能.

    图  9  接头断裂位置
    Figure  9.  Locations of of joints fracture. (a) 0 W; (b) 300 W; (c) 500 W; (d) 800 W
    图  10  接头断口形貌
    Figure  10.  Morphologies of joints fracture. (a) 0 W; (b) 300 W; (c) 500 W; (d) 800 W

    (1)在0 ~ 2500 W的蓝激光功率范围内,红外—蓝激光复合焊可以减缓下方铜板的铜元素向上方铝板的对流扩散强度,减少了两种材料液熔融状态下的冶金反应,而进一步增大蓝激光功率会导致激光总功率增加,发生过焊.

    (2)在接头界面层,沿着铜侧到铝侧方向依次生成ϒ2-Al4Cu9相、AlCu相、θ-Al2Cu相、α-Al + Al2Cu共晶组织和Al/Cu共晶组织,其中Al2Cu相是接头界面层主要IMC相.

    (3)当红外激光功率为1050 W,蓝激光功率为300 W时,接头抗剪切力达到最大值795.51 N,断裂发生在铝侧热影响区处,呈韧性断裂模式.

  • 图  1   不同环境压力下焊接接头不同区域的动电位极化曲线

    Figure  1.   Polarization curves of different zones of welded joints under different ambient pressures. (a) 0.1 MPa; (b) 0.3 MPa; (c) 0.5 MPa

    图  2   浸泡不同时间后各个环境压力下的焊接接头的微观形貌

    Figure  2.   SEM images of corrosion morphology of welded joints under different ambient pressures after immersion for different periods in simulated seawater. (a) 0.1 MPa, 15 days; (b) 0.3 MPa, 15 days; (c) 0.5 MPa, 15 days; (d) 0.1 MPa, 30 days; (e) 0.3 MPa, 30 days; (f) 0.5 MPa, 30 days; (g) 0.1 MPa, 60 days; (h) 0.3 MPa, 60 days; (i) 0.5 MPa, 60 days

    图  3   3种焊接压力焊接接头浸泡60天腐蚀产物XRD图谱

    Figure  3.   XRD spectrum of the collected corrosion products of the welded joints under different ambient pressures for 60 days of immersion in simulated seawater

    表  1   焊接母材及焊丝的化学成分(质量分数,%)

    Table  1   Chemical compositions of welding base metal and welding wire

    材料CSiMnPSCrNiTiCuFe
    X65 管线钢 0.07 0.28 1.19 0.006 0.01 0.25 0.04 0.10 余量
    JM-68焊丝 0.08 0.08 1.76 0.014 0.03 0.09 余量
    下载: 导出CSV

    表  2   极化曲线数据拟合

    Table  2   Fitting data of polarization curve

    区域焊接环境压力0.1 MPa焊接环境压力0.3 MPa焊接环境压力0.5 MPa
    腐蚀电流密度
    Ic/(10−6A·cm−2)
    电极电阻
    Rp/(Ω·cm−2)
    腐蚀电流密度
    Ic/(10−6A·cm−2)
    电极电阻
    Rp/(Ω·cm−2)
    腐蚀电流密度
    Ic/(10−6A·cm−2)
    电极电阻
    Rp/(Ω·cm−2)
    焊缝4.12 4374.72 3944.82 321
    母材6.12 2696.32 2897.32 260
    热影响区15.51 64910.71 88814.31 518
    下载: 导出CSV
  • [1] 周建龙, 李晓刚, 程学群, 等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47 − 51.

    Zhou Jianlong, Li Xiaogang, Cheng Xuequn, et al. Research progress on corrosion of metallic materials in deep sea environment[J]. Corrosion Science & Protection Technology, 2010, 22(1): 47 − 51.

    [2] 丁扬. X65管线钢高压GMAW工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    Ding Yang. Research on X65 pipeline steel GMAW process under high pressure[D]. Harbin: Harbin Institute of Technology, 2014.

    [3]

    Majumdar J D. Underwater welding-present status and future scope[J]. Journal of Naval Architecture and Marine Engineering, 2006, 3(1): 38 − 47.

    [4]

    Łabanowski J, Fydrych D, Rogalski G. Underwater welding-a review[J]. Advances in Materials Science, 2009, 8(3): 11 − 22.

    [5] 黄继强, 薛龙, 吕涛, 等. 水下高压空气环境下GMAW电弧特性试验[J]. 焊接学报, 2010, 31(12): 17 − 20.

    Huang Jiqiang, Xue Long, Lü Tao, et al. Experiment on characteristics of GMAW arc in underwater hyperbaric air condition[J]. Transactions of the China Welding Institution, 2010, 31(12): 17 − 20.

    [6] 刘剑, 薛龙, 黄继强, 等. 水下高压干式环境下压力及焊接参数对GMAW 焊缝成形的影响[J]. 焊接学报, 2016, 37(2): 29 − 32.

    Liu Jian, Xue Long, Huang Jiqiang, et al. Effect of pressure and welding parameters on weld bead geometry of GMAW in underwater hyperbaric dry environment[J]. Transactions of the China Welding Institution, 2016, 37(2): 29 − 32.

    [7]

    Xue Long, Wu Jinming, Huang Junfen, et al. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 351 − 356. doi: 10.3901/CJME.2015.1104.131

    [8] 郑朋朋, 薛龙, 黄继强, 等. 基于多因素权重法的高压GMAW 焊缝成形分析[J]. 焊接学报, 2018, 39(10): 75 − 80.

    Zheng Pengpeng, Xue Long, Huang Jiqiang, et al. Analysis on weld bead geometry of hyperbaric GMAW based on multi-factor weighting method[J]. Transactions of the China Welding Institution, 2018, 39(10): 75 − 80.

    [9] 李凯, 高洪明, 李海超, 等. 焊接极性对水下高压干法GMAW影响分析[J]. 焊接学报, 2014, 35(8): 108 − 112.

    Li Kai, Gao Hongming, Li Haichao, et al. Effect of welding polar on dry hyperbaric GMAW process[J]. Transactions of the China Welding Institution, 2014, 35(8): 108 − 112.

    [10] 冯静, 薛龙, 黄军芬, 等. 高压环境下湿度对低碳钢熔化极气体保护焊焊接质量的影响[J]. 上海交通大学学报, 2016, 50(10): 1631 − 1634.

    Feng Jing, Xue Long, Huang Junfen, et al. Influence of humidity on welding quality of gas metal arc welding in hyperbaric environment[J]. Journal of Shanghai Jiao Tong University, 2016, 50(10): 1631 − 1634.

    [11] 刘宏, 薛龙, 黄继强, 等. 环境压力对熔化极气体保护焊焊缝强度及韧性的影响[J]. 上海交通大学学报, 2016, 50(10): 1613 − 1617.

    Liu Hong, Xue Long, Huang Jiqiang, et al. Influence of environmental pressure on strength and toughness of weld by Gas Metal Arc Welding[J]. Journal of Shanghai Jiao Tong University, 2016, 50(10): 1613 − 1617.

    [12] 王瑜, 黄继强, 薛龙, 等. 不同环境压力下X65管线钢焊接接头的组织及硬度[J]. 铸造技术, 2016, 37(10): 2193 − 2196.

    Wang Yu, Hang Jiqiang, Xue Long, et al. Microstructure and hardness of welding joints of X65 pipeline steel under different environmental pressures[J]. Foundry Technology, 2016, 37(10): 2193 − 2196.

    [13]

    Igor A Chaves, Robert E Melchers. Pitting corrosion in pipeline steel weld zones[J]. Corrosion Science, 2011, 53(12): 4026 − 4032. doi: 10.1016/j.corsci.2011.08.005

    [14]

    Rihan R O. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution[J]. Material Research, 2013, 16(1): 227 − 236.

    [15]

    Vera R, Vinciguerra F, Bagnara M. Comparative study of the behavior of API 5L-X65 grade steel and ASTM A53-B grade steel against corrosion in seawater[J]. International Journal of Electrochemical Science, 2015, 10(8): 6187 − 6198.

    [16] 刘智勇, 贾静焕, 杜翠薇, 等. X80和X52钢在模拟海水环境中的腐蚀行为与规律[J]. 中国腐蚀与防护学报, 2014, 34(4): 327 − 332. doi: 10.11902/1005.4537.2013.129

    Liu Zhiyong, Jia Jinghuan, Du Cuiwei, et al. Corrosion behavior of X80 and X52 steels in simulated seawater environments[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 327 − 332. doi: 10.11902/1005.4537.2013.129

    [17] 孔德军, 王进春, 叶存冬. X70高钢级管线钢焊接接头盐雾腐蚀机理[J]. 焊接学报, 2015, 36(5): 51 − 54.

    Kong Dejun, Wang Jinchun, Ye Cundong. Mechanism of salt spray corrosion of X70 high grade pipeline steel welded joints[J]. Transactions of the China Welding Institution, 2015, 36(5): 51 − 54.

    [18] 范舟, 刘建仪, 李士伦, 等. X70管线钢焊接接头组织及其海水腐蚀规律[J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171 − 174.

    Fan Zhou, Liu Jianyi, Li Shilun, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5): 171 − 174.

    [19] 刘智勇, 万红霞, 李禅, 等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321 − 326. doi: 10.11902/1005.4537.2013.156

    Liu Zhiyong, Wan Hongxia, Li Chan, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep-sea environment[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(4): 321 − 326. doi: 10.11902/1005.4537.2013.156

    [20] 林鑫, 杜敏, 李成杰, 等. DH36钢焊接件海水腐蚀行为研究[J]. 中国海洋大学学报(自然科学版), 2013, 43(3): 70 − 74.

    Lin Xin, Du Min, Li Chengjie, et al. Study on corrosion in seawater of welded DH36 steel[J]. Periodical of Ocean University of China, 2013, 43(3): 70 − 74.

    [21]

    Liang Ping, Shi Yanhua, Zhang Yunxia, et al. Characterization of passive film formed on X80 pipeline steel in sodium bicarbonate solution[J]. Advanced Materials Research, 2013(690−693): 101 − 105.

    [22] 李金波, 左剑恶. 温度对X80管线钢钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2009, 29(1): 40 − 43. doi: 10.3969/j.issn.1005-4537.2009.01.008

    Li Jinbo, Zuo Jian’e. Influence of temperature on the electrochemical property of passive film formed on x80 pipeline steel[J]. Journal of Chinese Society for Corrosion and Protection, 2009, 29(1): 40 − 43. doi: 10.3969/j.issn.1005-4537.2009.01.008

    [23] 张忠明, 马莹, 马艳艳, 等. Mg-1Zn-1Mn合金微弧氧化膜在SBF模拟体液中的腐蚀行为[J]. 材料热处理学报, 2018, 39(5): 108 − 116.

    Zhang Zhongming, Ma Ying, Ma Yanyan, et al. Corrosion behavior of micro-arc oxidation film of Mg-1Zn-1Mn alloy in SBF simulated body fluid[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 108 − 116.

    [24]

    Wang Yafei, Cheng Guangxu, Wu Wei, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions[J]. Applied Surface Science, 2015, 349(15): 746 − 756.

    [25] 刘智勇, 董超芳, 贾志军, 等. X70钢在模拟潮湿存储环境中的点蚀行为[J]. 金属学报, 2011, 47(8): 1009 − 1016.

    Liu Zhiyong, Dong Chaofang, Jia Zhijun, et al. Pitting corrosion of X70 pipeline steel in the simulated wet storage environment[J]. Acta Metallurgica Sinica, 2011, 47(8): 1009 − 1016.

图(3)  /  表(2)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  18
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-23
  • 网络出版日期:  2021-04-11
  • 刊出日期:  2021-04-30

目录

/

返回文章
返回