Influence of rare earths, Ga element and their synergistic effects on the microstructure and properties of lead-free solders
-
摘要: 稀土元素和低熔点的Ga元素常作为合金化元素添加到无铅钎料中以提高钎料的综合性能和可靠性,而向无铅钎料中复合添加稀土元素和Ga元素时,二者的协同作用可以进一步改善钎料组织和性能,同时Ga元素可以有效抑制含稀土Nd的无铅钎料中锡须的生长. 对单独添加稀土元素和低熔点元素Ga以及复合添加稀土元素和Ga元素的协同效应对无铅钎料显微组织、润湿性能、熔化特性、力学性能和可靠性的影响进行了综述,介绍了含稀土元素的无铅钎料中锡须产生的机理及影响锡须生长的因素. 最后总结了目前含稀土元素和Ga元素的无铅钎料研究中存在的不足,并展望了未来的研究方向.Abstract: Rare earth (RE) elements and low melting-point Ga elements are often added as alloying elements to lead-free solders to improve the overall performance and reliability of the solder. When RE and Ga elements are added in combination, their synergistic effects can further improve the microstructure and properties of the solder. In particular, Ga element can effectively inhibit the growth of Sn whiskers in lead-free solders containing RE Nd. Therefore, this article reviewed the effects of RE, low melting-point Ga element and their synergistic effects on the microstructure, wettability, melting characteristics, mechanical properties and reliability of lead-free solders. What’s more, the mechanism of Sn whiskers formation in lead-free solders bearing RE and the factors affecting the growth of Sn whiskers were introduced. Finally, the deficiencies in the research of lead-free solder containing RE and Ga elements were summarized, and the future research direction was looked-ahead.
-
Keywords:
- rare earths /
- Ga element /
- synergistic effect /
- microstructure /
- property
-
-
图 15 Au/Ni(P)/Cu焊盘钎焊的焊点在室温、3.1 × 104 A/cm2的电流密度下通电744 h后的SEM图像
Figure 15. Microstructure of solder joint with Au/Ni(P)/Cu after 744 h at room temperature under 3.1 × 104 A/cm2 current. (a) Sn-9Zn solder joint without voids; (b) Sn-9Zn solder joint; (c) Sn-9Zn-0.5Ce solder joint with voids; (d) Sn-9Zn-0.5Ce solder joint
图 17 Sn-9Zn-1Nd和Sn-9Zn-0.5Ga-1Nd钎料组织
Figure 17. Microstructure of Sn-9Zn-1Nd and Sn-9Zn-0.5Ga-1Nd solder after aging treatment. (a) Sn-9Zn-1Nd, 60 h at room temperature; (b) Sn-9Zn-1Nd, 720 h at room temperature; (c) Sn-9Zn-0.5Ga-1Nd, 120 h at room temperature; (d) Sn-9Zn-0.5Ga-1Nd, 1 080 h at room temperature; (e) Sn-9Zn-0.5Ga-1Nd, 3 000 h at room temperature
表 1 不同Ga含量的Sn-3.0Ag-0.5Cu钎料熔化特性
Table 1 Melting characteristic of Sn-3.0Ag-0.5Cu-xGa solders
Ga 含量(%) 固相线Ts/℃ 液相线Tv/℃ 熔化区间∆T/℃ 0 217.8 229.6 11.8 0.5 216.1 227.5 11.4 1.0 215.3 226.4 11.1 1.5 213.7 225.1 11.4 表 2 Sn-Eu相的能谱分析结果
Table 2 EDS result of Sn-Eu phase
元素 质量分数w(%) 原子分数a(%) Sn 66.23 71.52 Eu 33.77 28.48 表 3 Sn-9Zn-xGa钎料的熔化特性
Table 3 Melting characteristic of Sn-9Zn-xGa solders
合金 固液相温度
Tonset/℃液相线温度
Tend/℃熔化区间
Tend−Tonset /℃熔化热
ΔH/(J·g−1)Sn-9Zn 198.3 200.3 +2.0 185.3 Sn-9Zn-0.25Ga 196.7 200.1 +3.4 178.5 Sn-9Zn-0.50Ga 195.8 199.7 +3.9 164.7 Sn-9Zn-0.75Ga 193.1 198.3 +5.2 157.8 Sn-9Zn-1.00Ga 192.1 197.8 +5.7 151.0 表 4 Sn-8.55Zn-0.5Ag-xGa的拉伸性能
Table 4 Tensile properfy of Sn-8.55Zn-0.5Ag-xGa
合金 抗拉强度Rm/MPa 断后伸长率A(%) Sn-8.55Zn-0.5Ag 50 50 Sn-8.55Zn-0.5Ag-1.0Ga 78 37 Sn-8.55Zn-0.5Ag-2.0Ga 108 30 Sn-8.55Zn-0.5Ag-3.0Ga 76 7 -
[1] Annuar S, Mahmoodian R, Hamdi M, et al. Intermetallic compounds in 3D integrated circuits technology: a brief review[J]. Science & Technology of Advanced Materials, 2017, 18(1): 693 − 703.
[2] 薛松柏, 王博, 张亮, 等. 中国近十年绿色焊接技术研究进展[J]. 材料导报, 2019, 33(9): 2813 − 2830. Xue Songbai, Wang Bo, Zhang Liang, et al. Development of green welding technology in China during the past decade[J]. Materials Reports, 2019, 33(9): 2813 − 2830.
[3] Tu K N, Liu Y X. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology[J]. Materials Science and Engineering: R: Reports, 2019, 136: 1 − 12. doi: 10.1016/j.mser.2018.09.002
[4] Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and nano particles[J]. Materials Science and Engineering: R: Reports, 2014, 82: 1 − 32. doi: 10.1016/j.mser.2014.06.001
[5] 王尚, 田艳红. 微纳连接技术研究进展[J]. 材料科学与工艺, 2017, 25(5): 1 − 5. doi: 10.11951/j.issn.1005-0299.20160464 Wang Shang, Tian Yanhong. The state of art on the micro-joining and nano-joining technologies[J]. Materials Science & Technology, 2017, 25(5): 1 − 5. doi: 10.11951/j.issn.1005-0299.20160464
[6] Zhang P, Xue S B, Wang J H. New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints[J]. Materials & Design, 2020, 192: 108726.
[7] Wang J H, Xue S B, Zhang P, et al. The reliability of lead-free solder joint subjected to special environment: a review[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9065 − 9086. doi: 10.1007/s10854-019-01333-w
[8] Zhao M, Zhang L, Liu Z, et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging[J]. Science and Technology of Advanced Materials, 2019, 20(1): 421 − 444. doi: 10.1080/14686996.2019.1591168
[9] 徐恺恺, 张亮, 孙磊, 等. Sn-Zn钎料的研究进展[J]. 机械工程材料, 2020, 44(6): 1 − 5. doi: 10.11973/jxgccl202006001 Xu Kaikai, Zhang Liang, Sun Lei, et al. Reserach progress on Sn-Zn solder[J]. Materials for Mechanical Engineering, 2020, 44(6): 1 − 5. doi: 10.11973/jxgccl202006001
[10] Ren G, Wilding I J, Collins M N. Alloying influences on low melt temperature SnZn and SnBi solder alloys for electronic interconnections[J]. Journal of Alloys and Compounds, 2016, 665: 251 − 260. doi: 10.1016/j.jallcom.2016.01.006
[11] 王悔改, 张柯柯, 尹宸翔, 等. 微连接用碳基纳米颗粒增强无铅复合钎料的研究新进展[J]. 材料热处理学报, 2020, 41(3): 15 − 26. Wang Huigai, Zhang Keke, Yin Chenxiang, et al. Reviews on latest advances in carbon-based nano-particles enhanced lead-free composite solders for electronic micro-connection[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 15 − 26.
[12] 樊江磊, 刘占云, 李育文, 等. Sn-Cu系无铅钎料微合金化研究进展[J]. 材料导报, 2018, 32(21): 3774 − 3779. doi: 10.11896/j.issn.1005-023X.2018.21.014 Fan Jianglei, Liu Zhanyun, Li Yuwen, et al. Research progress of micro-alloying Sn-Cu based lead-free solders[J]. Materials Reports, 2018, 32(21): 3774 − 3779. doi: 10.11896/j.issn.1005-023X.2018.21.014
[13] Zhu Z, Sun H, Wu F, et al. Comparative study of the microstructure and mechanical strength of tin-copper (Sn0.7Cu) solder modified with silver (Ag) by both alloying and doping methods[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(7): 6835 − 6844. doi: 10.1007/s10854-016-4635-x
[14] Liu Y, Zhang H, Sun F L. Solderability of SnBi-nano Cu solder pastes and microstructure of the solder joints[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(3): 2235 − 2241. doi: 10.1007/s10854-015-4016-x
[15] 孙磊, 陈明和, 谢兰生, 等. 纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理[J]. 焊接学报, 2018, 39(8): 47 − 50. doi: 10.12073/j.hjxb.2018390199 Sun Lei, Chen Minghe, Xie Lansheng, et al. Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders[J]. Transactions of the China Welding Institution, 2018, 39(8): 47 − 50. doi: 10.12073/j.hjxb.2018390199
[16] Wu J, Xue S B, Wang J W, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3 Ag–0.7 Cu low-Ag solder[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(9): 7372 − 7387. doi: 10.1007/s10854-018-8727-7
[17] Tang Y, Luo S, Li G, et al. Ripening growth kinetics of Cu6Sn5 grains in Sn-3.0 Ag-0.5 Cu-xTiO2/Cu solder joints during the reflow process[J]. Journal of Electronic Packaging, 2018, 140(1): 011003. doi: 10.1115/1.4038861
[18] 屈敏, 曹天泽, 郑子豪, 等. ZnO纳米颗粒对Cu(Mo)/Sn-3.0Ag-0.5Cu-xZnO焊点界面IMC生长行为的影响[J]. 热加工工艺, 2019, 48(9): 22 − 26. Qu Min, Cao Tianze, Zheng Zihao, et al. Effect of ZnO Nano-particles on interfacial IMC growth behavior of Cu(Mo)/Sn-3.0Ag-0.5Cu-xZnO solder joints[J]. Hot Working Technology, 2019, 48(9): 22 − 26.
[19] Chen G, Peng H, Silberschmidt V V, et al. Performance of Sn–3.0 Ag–0.5 Cu composite solder with TiC reinforcement: physical properties, solderability and microstructural evolution under isothermal ageing[J]. Journal of Alloys and Compounds, 2016, 685: 680 − 689. doi: 10.1016/j.jallcom.2016.05.245
[20] Yang L, Song B B, Zhang Y C, et al. Microstructure, interfacial IMC layer and mechanical properties of Cu/Sn-9Zn-xZrC/Cu solder joints[J]. Materials Research Express, 2018, 5(8): 086301. doi: 10.1088/2053-1591/aacd97
[21] Zhu Z, Chan Y C, Chen Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder[J]. Materials Science and Engineering: A, 2018, 727: 160 − 169. doi: 10.1016/j.msea.2018.05.002
[22] 范舟, 张坤, 胡敏, 等. 石墨烯纳米片对AgCuTi钎料熔点与润湿性的影响[J]. 焊接学报, 2019, 40(4): 154 − 160. doi: 10.12073/j.hjxb.20170415 Fan zhou, Zhang kun, Hu min, et al. Effect of graphene nanosheets on melting point and wettability of AgCuTi solder[J]. Transactions of the China Welding Institution, 2019, 40(4): 154 − 160. doi: 10.12073/j.hjxb.20170415
[23] Ma Z, Belyakov S, Gourlay C. Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5 Cu solders[J]. Journal of Alloys and Compounds, 2016, 682: 326 − 337. doi: 10.1016/j.jallcom.2016.04.265
[24] Gain A K, Zhang L. Interfacial microstructure, wettability and material properties of nickel (Ni) nanoparticle doped tin–bismuth–silver (Sn–Bi–Ag) solder on copper (Cu) substrate[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3982 − 3994. doi: 10.1007/s10854-015-4252-0
[25] Li X Z, Ma Y, Zhou W, et al. Effects of nanoscale Cu6Sn5 particles addition on microstructure and properties of SnBi solder alloys[J]. Materials Science and Engineering: A, 2017, 684: 328 − 334. doi: 10.1016/j.msea.2016.12.089
[26] Li Y, Chan Y C. Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders[J]. Journal of Alloys and Compounds, 2015, 645: 566 − 576. doi: 10.1016/j.jallcom.2015.05.023
[27] 葛进国, 杨莉, 宋兵兵, 等. Cu/Sn-58Bi-xCe/Cu钎焊接头基体组织和力学性能的研究[J]. 热加工工艺, 2016, 45(11): 239 − 241. Ge Jinguo, Yang Li, Song Bingbing, et al. Investigation on microstructure and mechanical properties of Cu/Sn-58Bi-xCe/Cu solder joints[J]. Hot Working Technology, 2016, 45(11): 239 − 241.
[28] Aamir M, Tolouei-Rad M, Din I U, et al. Performance of SAC305 and SAC305-0.4 La lead free electronic solders at high temperature[J]. Soldering & Surface Mount Technology, 2019, 31(4): 250.
[29] 韩翼龙, 薛松柏, 薛鹏, 等. Pr, Nd对Sn0.3Ag0.7Cu0.5Ga无铅钎料显微组织的影响[J]. 焊接学报, 2017, 38(1): 103 − 106. Han Yilong, Xue Songbai, Xue Peng, et al. Effects of rare earth element Pr and Nd on microstructure of Sn-0.3Ag-0.7Cu-0.5Ga lead-free solder[J]. Transactions of the China Welding Institution, 2017, 38(1): 103 − 106.
[30] Hasnine M, Bozack M J. Effects of Ga additives on the thermal and wetting performance of Sn-0.7Cu solder[J]. Journal of Electronic Materials, 2019, 48(6): 3970 − 3978. doi: 10.1007/s11664-019-07171-0
[31] Tian S, Li S P, Zhou J, et al. Thermodynamic characteristics, microstructure and mechanical properties of Sn-0.7 Cu-xIn lead-free solder alloy[J]. Journal of Alloys and Compounds, 2018, 742: 835 − 843. doi: 10.1016/j.jallcom.2018.01.386
[32] 鲍泥发, 胡小武, 徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 材料导报, 2018, 32(12): 2015 − 2020. doi: 10.11896/j.issn.1005-023X.2018.12.014 Bao Nifa, Hu Xiaowu, Xu Tao. Interfacial reaction and microstructure evolution of SnAgCu-xBi/Cu joints[J]. Materials Reports, 2018, 32(12): 2015 − 2020. doi: 10.11896/j.issn.1005-023X.2018.12.014
[33] Jiang N, Zhang L, Liu Z Q, et al. Reliability issues of lead-free solder joints in electronic devices[J]. Science and Technology of Advanced Materials, 2019, 20(1): 876 − 901. doi: 10.1080/14686996.2019.1640072
[34] Nazri S F, Salleh M A A M. The effects of gallium additions on the microstructure of lead-free solder materials: a short review[J]. Solid State Phenomena, 2018, 280: 187 − 193. doi: 10.4028/www.scientific.net/SSP.280.187
[35] Wang H, Xue S B, Wang J X. Study on the microstructure and properties of low-Ag Sn–0.3Ag–0.7Cu–0.5Ga solder alloys bearing Pr[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(11): 8246 − 8254. doi: 10.1007/s10854-017-6537-y
[36] Xue P, Liang W L, He P, et al. Tin whisker growth inhibition in RE-doped Sn-Zn soldered joints[J]. Applied Sciences, 2019, 9(7): 1406. doi: 10.3390/app9071406
[37] 马超力, 薛松柏, 王博, 等. BAg17CuZnSn-xCe钎料组织及性能分析[J]. 焊接学报, 2018, 39(8): 42 − 46. doi: 10.12073/j.hjxb.2018390198 Ma Chaoli, Xue Songbai, Wang Bo, et al. Study on microstructure and properties of BAg17CuZnSn-xCe filler metals[J]. Transactions of the China Welding Institution, 2018, 39(8): 42 − 46. doi: 10.12073/j.hjxb.2018390198
[38] Ma C L, Xue S B, Wang B. Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga[J]. Journal of Alloys and Compounds, 2016, 688: 854 − 862. doi: 10.1016/j.jallcom.2016.07.255
[39] 张亮, 韩继光, 刘凤国, 等. 纳米TiO2颗粒对SnAgCu钎料组织与性能的影响[J]. 稀有金属材料与工程, 2013, 42(9): 1897 − 1900. Zhang Liang, Han Jiguang, Liu Fengguo, et al. Effect of nano-particles TiO2 on the microstructures and properties of SnAgCu Solders[J]. Rare Metal Materials and Engineering, 2013, 42(9): 1897 − 1900.
[40] Gao L L, Xue S B, Zhang L, et al. Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder[J]. Journal of Materials Science Materials in Electronics, 2010, 21(7): 643 − 648. doi: 10.1007/s10854-009-9970-8
[41] Dudek M A, Chawla N. Effect of rare-earth (La, Ce, and Y) additions on the microstructure and mechanical behavior of Sn-3.9Ag-0.7Cu solder alloy[J]. Metallurgical and Materials Transactions A, 2010, 41(3): 610 − 620. doi: 10.1007/s11661-009-0146-1
[42] Zhang L, Xue S B, Gao L L, et al. Effects of bulk Cu6Sn5 intermetallic compounds on the properties of Sn-Ag-Cu-Ce soldered joints[J]. Soldering & Surface Mount Technology, 2011, 23(1): 4 − 9.
[43] Luo D X, Xue S B, Li Z Q. Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder[J]. Journal of Materials Ence Materials in Electronics, 2014, 25(8): 3566 − 3571. doi: 10.1007/s10854-014-2057-1
[44] Zhang S Y, Zhu B X, Zhou X, et al. Wettability and interfacial morphology of Sn–3.0 Ag–0.5 Cu solder on electroless nickel plated ZnS transparent ceramic[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(19): 17972 − 17985. doi: 10.1007/s10854-019-02151-w
[45] 张亮, 孙磊, 郭永环, 等. SnAgCu-xEu钎料润湿性能及焊点力学性能研究[J]. 稀土, 2015, 36(4): 51 − 55. Zhang Liang, Sun Lei, Guo Yonghuan, et al. Wettability of SnAgCu-xEu solders and mechanical properties of solder joints[J]. Chinese Rare Earth, 2015, 36(4): 51 − 55.
[46] Liu S, Xue S B, Zhong S J, et al. Properties and microstructure of Sn–0.7Cu–0.05Ni lead-free solders with rare earth Nd addition[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(2): 1400 − 1410. doi: 10.1007/s10854-018-0410-5
[47] Wu J, Xue S B, Wang J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn–0.3 Ag–0.7 Cu low-Ag solder for electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(14): 10230 − 10244. doi: 10.1007/s10854-017-6790-0
[48] Zhang L, Fan X Y, Guo Y H, et al. Properties enhancement of SnAgCu solders containing rare earth Yb[J]. Materials & Design, 2014, 57: 646 − 651.
[49] Tu X X, Yi D Q, Wu J, et al. Influence of Ce addition on Sn-3.0Ag-0.5Cu solder joints: Thermal behavior, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2017, 698: 317 − 328. doi: 10.1016/j.jallcom.2016.12.191
[50] Chen H M, Guo C J, Huang J P, et al. Influence of gallium addition in Sn–Ag–Cu lead-fee solder[J]. Journal of Materials Science Materials in Electronics, 2015, 26(7): 5459 − 5464. doi: 10.1007/s10854-015-3102-4
[51] Zhang Q K, Long W M, Yu X Q, et al. Effects of Ga addition on microstructure and properties of Sn–Ag–Cu/Cu solder joints[J]. Journal of Alloys and Compounds, 2015, 622: 973 − 978. doi: 10.1016/j.jallcom.2014.11.030
[52] Xu J C, Xue S B, Luo D X, et al. Effect of Ga on the inoxidizability and wettability of Sn-0.5Ag-0.7Cu-0.05Pr solder[J]. Advances in Materials Science and Engineering, 2017(2017): 975.
[53] Liu N S, Lin K L. The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn–8.55Zn–0.5Ag–0.1Al–xGa solders and Cu[J]. Scripta Materialia, 2006, 54(2): 219 − 224. doi: 10.1016/j.scriptamat.2005.09.033
[54] 孔祥霞, 孙凤莲, 杨淼森, 等. Bi和Ni元素对Cu/SAC/Cu微焊点体钎料蠕变性能的影响[J]. 机械工程学报, 2017, 53(2): 53 − 60. doi: 10.3901/JME.2017.02.053 Kong Xiangxia, Sun Fenglian, Yang Miaosen, et al. Effect of Bi and Ni concentration on the creep behavior of the bulks of Cu/SAC/Cu micro solder joints[J]. Journal of Mechanical Engineering, 2017, 53(2): 53 − 60. doi: 10.3901/JME.2017.02.053
[55] Wang B, Xue S B, Wang J X, et al. Effect of rare earth Pr on creep behavior of Sn-0.3Ag-0.7Cu-0.5Ga low-Ag solder alloys[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2657 − 2662. doi: 10.1016/S1875-5372(18)30205-4
[56] Pei M, Qu J M. Creep and fatigue behavior of SnAg solders with lanthanum doping[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(3): 712 − 718. doi: 10.1109/TCAPT.2008.922002
[57] Zhang L, Xue S B, Gao L L, et al. Creep behavior of SnAgCu solders with rare earth Ce doping[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 412 − 417. doi: 10.1016/S1003-6326(09)60155-2
[58] Shi Y W, Tian J, Hao H, et al. Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder[J]. Journal of Alloys and Compounds, 2008, 453(1): 180 − 184.
[59] Nan X J, Xue S B, Zhai P Z, et al. Effect of Pr addition on properties of Sn-0.5Ag-0.7Cu-0.5Ga lead-free solder[J]. Journal of Electronic Materials, 2016, 45(10): 5443 − 5448. doi: 10.1007/s11664-016-4656-5
[60] 邵浩彬, 张宁, 时孝东, 等. 时效处理对Sn0.7Cu-0.5Al2O3/Cu焊点界面形态的影响[J]. 铸造技术, 2016, 37(9): 1838 − 1841. Shao Haobin, Zhang Ning, Shi Xiaodong, et al. Effect of aging treatment on interfacial morphology of Sn0.7Cu-0.5Al2O3/Cu solder joint[J]. Foundry Technology, 2016, 37(9): 1838 − 1841.
[61] 王剑豪, 薛松柏, 马超力, 等. 特殊环境用无铅钎料可靠性研究进展[J]. 中国有色金属学报, 2018, 28(12): 113 − 125. Wang Jianhao, Xue Songbai, Ma Chaoli, et al. Research progress on reliability of lead-free solders under special conditions[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(12): 113 − 125.
[62] Wang Y, Zhao X C, Liu Y, et al. Microstructure, wetting property of Sn–Ag–Cu–Bi–x Ce solder and IMC growth at solder/Cu interface during thermal cycling[J]. Rare Metals, 2021, 40(3): 714 − 719.
[63] Wu J, Xue S B, Wang J W, et al. Effect of 0.05 wt. % Pr addition on microstructure and shear strength of Sn-0.3Ag-0.7 Cu/Cu solder joint during the thermal aging process[J]. Applied Sciences, 2019, 9(17): 3590. doi: 10.3390/app9173590
[64] Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys and Compounds, 2012, 510(1): 38 − 45. doi: 10.1016/j.jallcom.2011.08.044
[65] Luo D X, Xue S B, Liu S. Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5195 − 5200. doi: 10.1007/s10854-014-2288-1
[66] 张志杰, 黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017(5): 592 − 600. Zhang Zhijie, Huang Mingliang. Liquid-solid electromigration behavior of Cu/Sn-52In/Cu micro-interconnect[J]. Acta Metallurgica Sinica, 2017(5): 592 − 600.
[67] 黄惠珍, 赵亚楠, 彭如意, 等. Sn-9Zn-0.1S/Cu焊点液固界面金属间化合物的生长动力学[J]. 焊接学报, 2019, 40(6): 23 − 28. Huang Huizhen, Zhao Yanan, Peng Ruyi, et al. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. Transactions of the China Welding Institution, 2019, 40(6): 23 − 28.
[68] 樊江磊, 翟恒涛, 刘占云, 等. Sn-Cu-Ni系无铅钎料研究进展[J]. 热加工工艺, 2020(5): 1 − 6. Fan Jianglei, Zhai Hengtao, Liu Zhanyun, et al. Research progress of Sn-Cu-Ni lead-free solders[J]. Hot Working Technology, 2020(5): 1 − 6.
[69] 葛进国, 杨莉, 刘海祥, 等. Sn0.7Cu-xNi无铅钎料界面组织与力学性能的研究[J]. 热加工工艺, 2015, 44(21): 237 − 239. Ge Jinguo, Yang Li, Liu Haixiang, et al. Study on interfacial microstructure and mechanical properties of Sn0.7Cu-xNi lead-free solder[J]. Hot Working Technology, 2015, 44(21): 237 − 239.
[70] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions[J]. Materials Science and Engineering R−Reports, 2004, 44(1): 1 − 44. doi: 10.1016/j.mser.2004.01.001
[71] Zeng G, Xue S B, Zhang L, et al. Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(8): 1101 − 1108. doi: 10.1007/s10854-010-0267-8
[72] Zeng G, Xue S B, Gao L L, et al. Interfacial microstructure and properties of Sn–0.7Cu–0.05Ni/Cu solder joint with rare earth Nd addition[J]. Journal of Alloys and Compounds, 2011, 509(25): 7152 − 7161. doi: 10.1016/j.jallcom.2011.04.037
[73] Wang J X, Xue S B, Han Z J, et al. Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn–Cu–Ni solders as well as mechanical properties of soldered joints[J]. Journal of Alloys and Compounds, 2009, 467(1): 219 − 226.
[74] Wang H W, Fang J S, Xu Z Q, et al. Improvement of Ga and Zn alloyed Sn–0.7Cu solder alloys and joints[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 3589 − 3595. doi: 10.1007/s10854-015-2873-y
[75] Zhao N, Huang M L, Zhong Y, et al. Effects of rare earth Ce addition on the microstructure, wettability and interfacial reactions of eutectic Sn–0.7Cu solder[J]. Journal of Materials Ence Materials in Electronics, 2015, 26(1): 345 − 352. doi: 10.1007/s10854-014-2406-0
[76] Zhang L, Tian L, Guo Y, et al. Wettability of SnCuNi-xEu solders and mechanical properties of solder joints[J]. Journal of Rare Earths, 2014, 32(12): 1184 − 1188. doi: 10.1016/S1002-0721(14)60201-5
[77] 赵猛, 张亮, 熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(8): 2467 − 2478. Zhao Meng, Zhang Liang, Xiong Mingyue. Research status and development trend of Sn-Cu lead-free solders[J]. Materials Reports, 2019, 33(8): 2467 − 2478.
[78] 刘霜, 薛松柏. Nd 对 Sn-0.7 Cu-0.05 Ni 焊点组织与力学性能的影响[J]. 焊接学报, 2020, 41(1): 50 − 54. Liu Shuang, Xue Songbai. Effect of Nd addition on microstructure and mechanical properties of Sn-0.7Cu-0.05Ni soldered joints[J]. Transactions of the China Welding Institution, 2020, 41(1): 50 − 54.
[79] 马超力, 薛松柏, 李阳, 等. 时效对Sn-Cu-Ni-xPr/Cu焊点组织与性能的影响[J]. 焊接学报, 2014, 35(3): 85 − 88. Ma Chaoli, Xue Songbai, Li Yang, et al. Effect of thermal aging on intermetallic compounds and properties of Sn-Cu-Ni-x Pr /Cu soldered joints[J]. Transactions of the China Welding Institution, 2014, 35(3): 85 − 88.
[80] Yan Z, Xian A P. Corrosion of Ga-doped Sn-0.7Cu solder in simulated marine atmosphere[J]. Metallurgical & Materials Transactions A, 2013, 44(3): 1462 − 1474.
[81] Zhang L, Cui J H, Han J G, et al. Microstructures and properties of SnZn-xEr lead-free solders[J]. Journal of Rare Earths, 2012, 30(8): 790 − 793. doi: 10.1016/S1002-0721(12)60131-8
[82] Chen K I, Cheng S C, Cheng C, et al. The effects of gallium additions on microstructures and thermal and mechanical properties of Sn-9Zn solder alloys[J]. Advances in Materials Science and Engineering, 2014, 2014: 606814.
[83] Chen K I, Cheng C, Wu S, et al. Effects of Ga addition on the wetting properties and tensile properties of Sn-Zn-Ag solder alloys[J]. Indian Journal of Engineering and Materials Sciences, 2014, 21(6): 621 − 627.
[84] 浦娟, 薛松柏, 吴铭方, 等. Ga2O3对Ag30CuZnSn药芯银钎料钎缝组织及钎焊接头性能的影响[J]. 焊接学报, 2020, 41(7): 46 − 52. Pu Juan, Xue Songbai, Wu Mingfang, et al. Effect of Ga2O3 on of microstructure and properties of brazed joints obtained by Ag30CuZnSn flux cored brazing filler metal and brass[J]. Transactions of the China Welding Institution, 2020, 41(7): 46 − 52.
[85] 罗冬雪, 薛鹏, 薛松柏, 等. 稀土元素Nd对Sn-Zn-Ga无铅钎料组织及性能的影响[J]. 焊接学报, 2013, 34(6): 57 − 60. Luo Dongxue, Xue Peng, Xue Songbai, et al. Effects of Nd on microstructure and properties of Sn-Zn-Ga Lead-free solder[J]. Transactions of the China Welding Institution, 2013, 34(6): 57 − 60.
[86] Chen W X, Xue S B, Wang H, et al. Effects of rare earth Ce on properties of Sn-9Zn lead-free solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 719 − 725. doi: 10.1007/s10854-009-9984-2
[87] Zhang L, Han J G, Guo Y H, et al. Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3269 − 3272. doi: 10.1109/TED.2012.2219624
[88] 张亮, 杨帆, 郭永环, 等. 含Yb的Sn-Zn无铅钎料性能研究[J]. 稀土, 2017, 38(5): 33 − 37. Zhang Liang, Yang Fan, Guo Yonghuan, et al. Effect of rare earth Yb on the properties of Sn-Zn lead-free solders[J]. Chinese Rare Earth, 2017, 38(5): 33 − 37.
[89] Wang H, Xue S B, Zhao F, et al. Effects of Ga, Al, Ag, and Ce multi-additions on the wetting characteristics of Sn-9Zn lead-free solder[J]. Rare Metals, 2009, 28(6): 600 − 605. doi: 10.1007/s12598-009-0115-2
[90] Chen W X, Xue S B, Wang H, et al. Investigation on properties of Ga to Sn-9Zn lead-free solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(5): 496 − 502. doi: 10.1007/s10854-009-9945-9
[91] Chen W X, Xue S B, Wang H. Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate[J]. Materials & Design, 2010, 31(4): 2196 − 2200.
[92] Zhao G J, Wen G H, Sheng G M, et al. Effects of rapid solidification process and 0.1%Pr/Nd addition on characteristics of Sn−9Zn solder alloy and interfacial properties of Cu/solder/Cu joints[J]. Journal of Central South University, 2016, 23(8): 1831 − 1838. doi: 10.1007/s11771-016-3237-3
[93] El-Daly A A, Swilem Y, Makled M H, et al. Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys[J]. Journal of Alloys and Compounds, 2009, 484(1−2): 134 − 142. doi: 10.1016/j.jallcom.2009.04.108
[94] Mahmudi R, Geranmayeh A R, Zahiri B, et al. Effect of rare earth element additions on the impression creep of Sn-9Zn solder alloy[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(1): 58 − 64. doi: 10.1007/s10854-009-9870-y
[95] Tian J, Hong C F, Hong L H, et al. Effect of rare earth metals on the properties of Zn-20Sn high-temperature lead-free solder[J]. Journal of Electronic Materials, 2019, 48(5): 2685 − 2690. doi: 10.1007/s11664-018-06917-6
[96] Xiao Z X, Xue S B, Hu Y H, et al. Properties and microstructure of Sn-9Zn lead-free solder alloy bearing Pr[J]. Journal of Materials Science: Materials in Electronics, 2011, 22(6): 659 − 665. doi: 10.1007/s10854-010-0192-x
[97] Xue P, Xue S B, Shen Y F, et al. Effect of Pr on properties and Sn whisker growth of Sn-9Zn-xPr solder[J]. Soldering & Surface Mount Technology, 2012, 24(4): 280 − 286.
[98] 李双, 胡小武, 徐涛, 等. Sn-9Zn/Cu焊点界面反应及其化合物生长行为[J]. 电子元件与材料, 2017, 36(11): 60 − 67. Li Shuang, Hu Xiaowu, Xu Tao, et al. Sn-9Zn/Cu interface reaction and its IMC growth behavior[J]. Electronic Components and Materials, 2017, 36(11): 60 − 67.
[99] Xue P, Xue S B, Shen Y F, et al. Interfacial microstructures and mechanical properties of Sn–9Zn–0.5Ga–xNd on Cu substrate with aging treatment[J]. Materials & Design, 2014, 60: 1 − 6.
[100] Ye H, Xue S B, Luo J D, et al. Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition[J]. Materials & Design, 2013, 46: 816 − 823.
[101] Xue P, Xue S B, Shen Y F, et al. Investigation on the intermetallic compound layer growth of SnZnGa/SnZnGaNd solder joints[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(10): 4219 − 4224. doi: 10.1007/s10854-014-2152-3
[102] Lin H J, Chuang T H. The effect of 0.5 wt. % Ce additions on the electromigration of Sn9Zn BGA solder packages with Au/Ni(P)/Cu and Ag/Cu pads[J]. Materials Letters, 2010, 64(4): 506 − 509. doi: 10.1016/j.matlet.2009.11.058
[103] 李继平, 卫国强. Sn-Bi系低温无铅钎料的研究现状与展望[J]. 焊接技术, 2019, 48(4): 1 − 5. Li Jiping, Wei Guoqiang. Research status and prospect of Sn-Bi series low-temperature lead-free solder[J]. Welding Technology, 2019, 48(4): 1 − 5.
[104] Wang F, Chen H, Huang Y, et al. Recent progress on the development of Sn–Bi based low-temperature Pb-free solders[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3222 − 3243. doi: 10.1007/s10854-019-00701-w
[105] Schon A F, Reyes R V, Spinelli J E, et al. Assessing microstructure and mechanical behavior changes in a Sn-Sb solder alloy induced by cooling rate[J]. Journal of Alloys & Compounds, 2019, 809: 151780.
[106] 杨帆, 张亮, 孙磊, 等. Sn-Bi系电子互连材料研究进展[J]. 电子元件与材料, 2016, 35(6): 1 − 7. Yang Fan, Zhang Liang, Sun Lei, et al. Research status of Sn-Bi system electronic interconnection materials[J]. Electronic Components and Materials, 2016, 35(6): 1 − 7.
[107] Zeng G, Mcdonald S, Nogita K. Development of high-temperature solders: Review[J]. Microelectronics Reliability, 2012, 52(7): 1306 − 1322. doi: 10.1016/j.microrel.2012.02.018
[108] 张亮, 杨帆, 孙磊, 等. 近十年含稀土无铅钎料研究进展及发展趋势[J]. 稀土, 2017, 38(1): 126 − 133. Zhang Liang, Yang Fan, Sun Lei, et al. Latest advances and development trend of lead free solder bearing rare earths in decades[J]. Chinese Rare Earth, 2017, 38(1): 126 − 133.
[109] Dudek M A, Chawla N. Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders[J]. Acta Materialia, 2009, 57(15): 4588 − 4599. doi: 10.1016/j.actamat.2009.06.031
[110] Liu M, Xian A P. Tin whisker growth on the surface of Sn-0.7Cu lead-free solder with a rare earth (Nd) addition[J]. Journal of Electronic Materials, 2009, 38(11): 2353 − 2361. doi: 10.1007/s11664-009-0926-9
[111] Wu J, Xue S B, Wang J W, et al. Comparative studies on microelectronic reliability issue of Sn whisker growth in Sn-0.3Ag-0.7Cu-1Pr solder under different environments[J]. Microelectronics Reliability, 2017, 79: 124 − 135. doi: 10.1016/j.microrel.2017.10.020
[112] Ye H, Xue S B, Zhang L, et al. Sn whisker growth in Sn–9Zn–0.5Ga–0.7Pr lead-free solder[J]. Journal of Alloys and Compounds, 2011, 509(5): L52 − L55. doi: 10.1016/j.jallcom.2010.09.189
[113] Zhang L, Sun L, Han J G, et al. Sizes effect of CeSn3 on the whiskers growth of SnAgCuCe solder joints in electronic packaging[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(8): 6194 − 6197.
[114] Xue P, Wang K H, Zhou Q, et al. Effect of Nd on tin whisker growth in Sn–Zn soldered joint[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(4): 3742 − 3747. doi: 10.1007/s10854-015-4217-3
[115] Ye H, Xue S B, Chen C, et al. Growth behaviors of tin whisker in RE-doped Sn-Zn-Ga solder[J]. Soldering & Surface Mount Technology, 2013, 25(3): 139 − 144.
[116] Ye H, Xue S B, Pecht M. Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content[J]. Journal of Materials Research, 2012, 27(14): 1887 − 1894. doi: 10.1557/jmr.2012.144
[117] Lin H J, Chuang T H. Effects of Ce and La additions on the microstructure and mechanical properties of Sn-9Zn solder joints[J]. Journal of Electronic Materials, 2010, 39(2): 200 − 208. doi: 10.1007/s11664-009-0959-0
[118] Chuang T H, Chi C C. Effect of adding Ge on rapid whisker growth of Sn–3Ag–0.5Cu–0.5Ce alloy[J]. Journal of Alloys and Compounds, 2009, 480(2): 974 − 980. doi: 10.1016/j.jallcom.2009.02.118
[119] Xue P, Xue S B, Shen Y F, et al. Wettability and interfacial whiskers of Sn–9Zn–0.5Ga–0.08Nd solder with Sn, SnBi and Au/Ni coatings[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(8): 3520 − 3525. doi: 10.1007/s10854-014-2049-1
[120] Jain C C, Chen C L, Lai H J, et al. The inhibition of tin whiskers on the surface of Sn-8Zn-3Bi-0.5Ce solders[J]. Journal of Materials Engineering & Performance, 2011, 20(6): 1043 − 1048.
[121] Xue P, Xue S B, Shen Y F, et al. Inhibiting the growth of Sn whisker in Sn-9Zn lead-free solder by Nd and Ga[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(6): 2671 − 2675. doi: 10.1007/s10854-014-1927-x
[122] Kletowski Z. Anomalous thermoelectric power behaviour in PrSn3 and NdSn3[J]. Solid State Communications, 2006, 137(11): 634 − 636. doi: 10.1016/j.ssc.2005.12.041
[123] Effect of Ga on microstructure and properties of Sn-Zn-Bi solder for photovolt ribbon[J]. China Welding, 2019, 28(4):1−7.
[124] Zhang J X, Xue S B, Liu S. Thermodynamic reaction mechanism of the intermetallic compounds of Sn xNd y and GaxNd y in soldered joint of Sn-9Zn-1Ga-0.5Nd[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5): 3064 − 3068. doi: 10.1007/s10854-015-2798-5
[125] Xue P, Xue S B, Shen Y F, et al. Mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga- xNd solder[J]. Journal of Electronic Materials, 2014, 43(9): 3404 − 3410. doi: 10.1007/s11664-014-3278-z