高级检索

基于铝膜中间层的聚碳酸酯激光透射焊接热-固耦合数值模拟

丁宁, 钟红强, 黄嘉沛, 王传洋

丁宁, 钟红强, 黄嘉沛, 王传洋. 基于铝膜中间层的聚碳酸酯激光透射焊接热-固耦合数值模拟[J]. 焊接学报, 2021, 42(2): 46-50, 55. DOI: 10.12073/j.hjxb.20200716001
引用本文: 丁宁, 钟红强, 黄嘉沛, 王传洋. 基于铝膜中间层的聚碳酸酯激光透射焊接热-固耦合数值模拟[J]. 焊接学报, 2021, 42(2): 46-50, 55. DOI: 10.12073/j.hjxb.20200716001
DING Ning, ZHONG Hongqiang, HUANG Jiapei, WANG Chuanyang. Thermal-solid coupling numerical simulation of laser transmission welding polycarbonate based on aluminum film intermediate layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 46-50, 55. DOI: 10.12073/j.hjxb.20200716001
Citation: DING Ning, ZHONG Hongqiang, HUANG Jiapei, WANG Chuanyang. Thermal-solid coupling numerical simulation of laser transmission welding polycarbonate based on aluminum film intermediate layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(2): 46-50, 55. DOI: 10.12073/j.hjxb.20200716001

基于铝膜中间层的聚碳酸酯激光透射焊接热-固耦合数值模拟

基金项目: 国家自然科学基金资助项目(51475315,52075354);江苏省高校自然科学基金资助项目(17KJB460013).
详细信息
    作者简介:

    丁宁,硕士;主要从事激光材料加工的研究; Email:277622829@qq.com.

    通讯作者:

    王传洋,博士,教授,博士研究生导师; Email:cywang@suda.edu.cn.

  • 中图分类号: TN 249,TG 404

Thermal-solid coupling numerical simulation of laser transmission welding polycarbonate based on aluminum film intermediate layer

  • 摘要: 以聚碳酸酯为研究对象,使用铝膜作为中间传导层,选用高斯面热源模型,建立了金属薄膜热应力理论模型和有限元模型,应用COMSOL软件对含有铝膜中间层的聚碳酸酯激光透射焊接过程进行数值模拟. 首先分析焊接过程中焊缝不同位置处的形变和不同方向的体应变张量. 然后根据模拟出的等效应力云图和主应力云图,分析焊接过程中的应力大小及分布. 结果表明,离激光中心越近,体应变张量越大,形变越大;铝膜与聚碳酸酯间隙交界处等效应力最大,并且中心点应力随时间先增大后减小,最后趋于稳定. 运用拉伸机进行拉伸试验,将试验结果与模拟结果进行对比,发现铝膜与聚碳酸酯间隙交界处产生脆性断裂,断裂处与应力集中处相同,结果表明两者之间有良好的一致性.
    Abstract: This article takes polycarbonate as the research object, aluminum film is used as the intermediate conductive layer, Gaussian surface heat source model is selected, and the metal film thermal stress theoretical model and finite element model are established. The COMSOL software is used to analyze the polycarbonate laser containing the aluminum film intermediate layer. The transmission welding process is numerically simulated. First, the deformation at different positions and the volume strain tensor in different directions are analyzed. Then, according to the simulated equivalent stress cloud diagram and principal stress cloud diagram, the magnitude and distribution of stress in the welding process are analyzed. The results show that the closer to the laser center, the greater the volume strain tensor and the greater the deformation; the equivalent stress at the junction of the aluminum film and the polycarbonate gap is the largest, and the stress at the center point first increases and then decreases with time, and finally tends to stable. The tensile test was carried out with a tensile machine, and the experimental results were compared with the simulation results. It was found that brittle fracture occurred at the junction of the aluminum film and the polycarbonate gap, and the fracture was the same as the stress concentration. The results showed that there is good consistence between them.
  • 图  1   薄膜热应力分析

    Figure  1.   Thermal stress analysis of thin films. (a) unstressed; (b) bear bending moment

    图  2   体应变张量以及形变

    Figure  2.   Body strain tensor and deformation. (a) body strain tensor; (b) deformation

    图  3   a→b方向不同时刻体应变张量

    Figure  3.   Body strain tensor at different times in a→b direction

    图  4   c→d方向不同时刻体应变张量

    Figure  4.   Body strain tensor at different times in c→d direction

    图  5   范式等效应力图

    Figure  5.   Paradigm equivalent stress map. (a) equivalent stress contour; (b) principal stress diagram

    图  6   应力集中造成的试件断裂

    Figure  6.   Test piece fracture caused by stress concentration

    图  7   中心点等效应力随时间变化规律

    Figure  7.   Variation of the equivalent stress at the center point with time

    表  1   单因素试验工艺参数

    Table  1   Process parameters of single factor experiment

    序号激光功率P/W焊接速度v/(mm·s−1)吸光剂宽度W/mm
    12010.5
    22530.75
    33051
    43572
    54093
    645104
    750155
    855206
    960257
    下载: 导出CSV

    表  2   聚碳酸酯热物理性能参数

    Table  2   Thermophysical properties of polycarbonate

    玻璃转化温度Tb/℃热分解温度Tr/℃热变形温度Ts/℃
    145~150340132
    下载: 导出CSV
  • [1] 姜宁, 王传洋. 基于三维真实表面形貌的聚碳酸酯激光透射焊接温度场模拟[J]. 激光与光电子学进展, 2017, 54(9): 221 − 227.

    Jiang Ning, Wang Chuanyang. Temperature field simulation of laser transmission welding of polycarbonate based on three-dimension real surface topography[J]. Laser & Optoelectronics Progress, 2017, 54(9): 221 − 227.

    [2] 王传洋, 郝云, 沈璇璇, 等. 工艺参数对激光透射焊接聚碳酸酯影响[J]. 焊接学报, 2016, 37(7): 57 − 60.

    Wang Chuanyang, Hao Yun, Shen Xuanxuan, et al. Effect of process parameters on laser transmission welding of polycarbonate[J]. Transactions of the China Welding Institution, 2016, 37(7): 57 − 60.

    [3]

    Rodríguez-Vidal E, Quintana I, Gadea C. Laser transmission welding of ABS:Effect of CNTs concentration and process parameters on material integrity and weld formation[J]. Journal of Optical Image Processing, 2014, 57: 194 − 201.

    [4]

    Benoit Cosson, Mylène Deléglise, Wolfgang Knapp. Numerical analysis of thermoplastic composites laser welding using ray tracing method[J]. Composites Part B, 2015, 68: 85 − 91. doi: 10.1016/j.compositesb.2014.08.028

    [5]

    Bates P J, Okoro T B, Chen M. Thermal degradation of PC and PA6 during laser transmission welding[J]. Welding in the World, 2014, 59(3): 381 − 390.

    [6]

    Liu Huixia, Liu Wei, Meng Dongdong, et al. Simulation and experimental study of laser transmission welding considering the influence of interfacial contact status[J]. Materials & Design, 2016, 92: 246 − 260.

    [7] 刘海华, 苏桂生, 王传洋, 等. 激光透射焊接聚碳酸酯温度场模拟与分析[J]. 焊接技术, 2017, 46(7): 4 − 7.

    Liu Haihua, Su Guisheng, Wang Chuanyang, et al. Simulation and analysis of temperature field of laser transmission welding polycarbonate[J]. Welding Technology, 2017, 46(7): 4 − 7.

    [8] 刘海华, 姜宁, 郝云, 等. 激光透射焊接聚碳酸酯工艺参数对接触热导率的影响[J]. 中国激光, 2017, 44(12): 62 − 70.

    Liu Haihua, Jiang Ning, Hao Yun, et al. Influences of process parameters of laser transmission welding of polycarbonate on contact thermal conductivity[J]. Chinese Journal of Lasers, 2017, 44(12): 62 − 70.

    [9]

    Liu M, OuYang D, Zao J, et al. Clear plastic transmission laser welding using a metal absorber[J]. Optics & Laser Technology, 2018, 105: 242 − 248.

    [10]

    Liu H, Chen G, Jiang H, et al. Performance and mechanism of laser transmission joining between glass fiber‐reinforced PA66 and PC[J]. Journal of Applied Polymer Science, 2016, 133(9): 043068.1 − 043068.8.

    [11]

    Liu X, Xiong Y, Ren N, et al. Theoretical model for ablation of thick aluminum film on polyimide substrate by laser etching[J]. Journal of Laser Applications, 2018, 30(4): 042002.1 − 042002.7.

    [12] 钟红强, 王传洋, 王呈栋, 等. 基于铝膜吸收层的激光透射焊接聚碳酸酯研究[J]. 应用激光, 2019, 39(4): 590 − 595.

    Zhong Hongqiang, Wang Chuanyang, Wang Chengdong, et al. Research on laser transmission welding polycarbonate based on aluminum film absorbing layer[J]. Applied Laser, 2019, 39(4): 590 − 595.

    [13] 吴家洲,张华,李玉龙,等. 激光穿孔点焊接瞬态过程数值分析[J]. 焊接学报, 2019, 40(2): 52 − 57.

    Wu Jiazhou, Zhang Hua, Li Yulong, et al. Numerical analysis of transient process in laser keyholing spot welding[J]. Transactions of the China Welding Institution, 2019, 40(2): 52 − 57.

    [14]

    Gerald Stoney G. The tension of metallic films deposited by electrolysis[J]. Proceedings of the Royal Society of London, 1909, 82(553): 172 − 175.

图(7)  /  表(2)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  123
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回