高级检索

基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测

邓彩艳, 刘庚, 龚宝明, 刘永

邓彩艳, 刘庚, 龚宝明, 刘永. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
引用本文: 邓彩艳, 刘庚, 龚宝明, 刘永. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测[J]. 焊接学报, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003
Citation: DENG Caiyan, LIU Geng, GONG Baoming, LIU Yong. Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 30-37. DOI: 10.12073/j.hjxb.20200706003

基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测

基金项目: 国家自然科学基金资助项目(51875402)
详细信息
    作者简介:

    邓彩艳,博士,教授,博士研究生导师;主要从事焊接结构断裂、疲劳及延寿技术、焊接结构完整性的研究;Email:dengcy@tju.edu.cn.

    通讯作者:

    龚宝明,副教授. Email:gongbm@tju.edu.cn.

  • 中图分类号: TG 454

Fatigue crack initiation life prediction based on Tanaka-Mura dislocation model

  • 摘要: 为了准确预测材料的疲劳寿命,提高结构疲劳寿命预测精度,对ABAQUS有限元数值模拟预测试样疲劳寿命的方法进行了研究. 基于Tanaka-Mura位错理论,利用python语言对ABAQUS进行二次开发,模拟预测了S960QL马氏体钢和Ti2AlNb钛合金接头各区域疲劳裂纹萌生寿命. 利用泰森多边形法生成了晶体特征单元建立了微观子模型,考虑了体心立方结构相互垂直的两条滑移带作为潜在的裂纹萌生位置,并对具有相同取向的多条平行滑移带都进行了模拟计算. 通过计算得到的裂纹扩展速率变化,给出了裂纹萌生阶段过渡到裂纹扩展阶段的临界点处的裂纹萌生寿命. 模拟结果表明,除焊缝柱状晶组织外裂纹萌生寿命与试验数据吻合良好.
    Abstract: In order to accurately predict the fatigue life of materials and improve the accuracy of structural fatigue life prediction, the method of ABAQUS finite element numerical simulation to predict the fatigue life of specimens was studied. Based on Tanaka-Mura dislocation theory, ABAQUS was redeveloped by using Python language. The fatigue crack initiation life of S960QL martensitic steel and Ti2AlNb titanium alloy joint was simulated and predicted. The representative volume element is generated by Tyson polygon method, and the micro sub-model is established. Two perpendicular slip bands of bcc structure are considered as potential crack initiation locations, and several parallel slip bands with the same orientation are simulated. The crack initiation life at the critical point from the crack initiation stage to the crack growth stage is given by the calculated crack growth rate change. The simulation results show that the crack initiation life is in good agreement with the experimental data except the columnar crystal structure.
  • 图  1   有限元模拟模型图

    Figure  1.   Model of finite element simulation. (a) finite element model of martensitic steel; (b) finite element model of titanium alloy joint

    图  2   有限元模型图

    Figure  2.   Model of finite element simulation. (a) microstructure of Ti2AlNb welded joint; (b) finite element model of Ti2AlNb welded joint

    图  3   宏观模型与子模型图

    Figure  3.   Macro model and sub-model diagram

    图  4   子模型的边界条件设置

    Figure  4.   Boundary condition of sub-model

    图  5   子模型中赋予晶粒随机取向

    Figure  5.   Random orientation of grains in sub-model

    图  6   晶粒内的多重滑移带

    Figure  6.   A grain with multiple slip bands

    图  7   短裂纹与长裂纹裂纹扩展速率变化

    Figure  7.   Change of crack growth rate of short crack and long crack

    图  8   马氏体钢子模型的剪应力分布

    Figure  8.   Shear stress distribution of sub-model of martensitic steel

    图  9   钛合金接头子模型的剪应力分布

    Figure  9.   Shear stress distribution of sub-model of titanium alloy joint. (a) Ti2AlNb (weld zone); (b) Ti2AlNb (heat affected zone); (c) Ti2AlNb (base metal zone)

    图  10   马氏体钢疲劳裂纹萌生模拟结果

    Figure  10.   Simulation results of fatigue crack initiation of martensitic steel. (a) N = 7 960 (10 cracks); (b) N = 48 475 (50 cracks); (c) N = 104 223 (100 cracks); (d) N = 206 300 (167 cracks)

    图  11   热影响区疲劳裂纹萌生模拟结果

    Figure  11.   Simulation results of fatigue crack initiation in HAZ

    图  12   裂纹数目与扩展速率关系图

    Figure  12.   Relationship between crack number and crack growth rate. (a) martensitic steel; (b) heat affected zone of titanium alloy joint; (c) base metal zone of titanium alloy joint

    表  1   正交各向异性弹性刚度矩阵各分量

    Table  1   Components of orthotropic elastic stiffness matrix

    材料C11/GPaC22/GPaC33/GPaC12/GPaC13/GPaC23/GPaC44/GPaC55/GPaC66/GPa
    S960QL 233 233 233 135 135 135 118 118 118
    Ti2AlNb (HAZ) 164 164 164 70 70 70 47 47 47
    下载: 导出CSV

    表  2   模拟所需其它参数

    Table  2   Other parameters required for simulation

    材料临界分剪应力
    Kcrss/MPa
    单位面积断裂能
    Ws/(kJ·m−2)
    泊松比
    υ
    S960QL 108 2 0.3
    Ti2AlNb 焊缝区 180 1.324 0.3
    Ti2AlNb 热影响区 133 2 0.3
    Ti2AlNb 母材区 170.06 2 0.3
    下载: 导出CSV

    表  3   模拟结果与试验值对比

    Table  3   Comparison between simulation results and experimental values

    材料试验值预测值误差
    S960QL 216 000 206 300 4.49%
    Ti2AlNb (WELD) 48002 10394 78.35%
    Ti2AlNb (HAZ) 55009 55236 0.4%
    Ti2AlNb (BASE) 60007 64096 6.81%
    下载: 导出CSV
  • [1] 白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149 − 153.

    Bai Yili, Wang Dongpo, Deng Caiyan, et al. Effect of ultrasonic impact strength on fatigue life of welded joint[J]. Transactions of the China Welding Institution, 2019, 40(12): 149 − 153.

    [2] 邓彩艳, 牛亚如, 龚宝明, 等. 承载超声冲击下焊接接头疲劳性能的改善[J]. 焊接学报, 2017, 38(7): 72 − 76.

    Deng Caiyan, Niu Yaru, Gong Baoming, et al. Improvement of fatigue properties of welded joints under ultrasonic impact loading[J]. Transactions of the China Welding Institution, 2017, 38(7): 72 − 76.

    [3]

    Shibanuma K, Ueda K, Ito H, et al. Model for predicting fatigue life and limit of steels based on micromechanics of small crack growth[J]. Materials & Design, 2018, 139: 269 − 282.

    [4]

    Tanaka K, Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics, 1981, 48(1): 97 − 103. doi: 10.1115/1.3157599

    [5]

    Brückner-Foit A, Huang X. Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading[J]. International Journal of Fatigue, 2006, 28(9): 963 − 971. doi: 10.1016/j.ijfatigue.2005.08.011

    [6]

    Jezernik N, Kramberger J, Lassen T, et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(11): 714 − 723.

    [7]

    Mlikota M, Schmauder S, BožićŽ. Calculation of the Wöhler (SN) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289 − 297. doi: 10.1016/j.ijfatigue.2018.03.018

    [8]

    Mlikota M, Staib S, Schmauder S, et al. Numerical deter- mination of Paris law constants for carbon steel using a two-scale model[C]//Journal of Physics: Conference Series. IOP Publishing, 2017, 843(1): 012042.

    [9] 殷良伟. Ti_2AlNb焊接接头微区高温本构关系及疲劳裂纹萌生模型研究[D]. 南京: 南京航空航天大学, 2018.

    Yin Liangwei. Research on constitutive relationship and fatigue crack initiation of Ti2AlNb alloy welded joints at elevated temperature[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

    [10] 刘亚波. 45钢疲劳裂纹萌生与扩展的数值模拟[D]. 秦皇岛: 燕山大学, 2014.

    Liu Yabo. Numerical simulation of metal component’s fatigue crack initiation and propagation[D]. Qin Huangdao: Yanshan University, 2000.

    [11] 陈小进. TC4-DT钛合金电子束焊接接头裂纹萌生数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017.

    Chen Xiaojin. Simulation and in-stiu test of TC4-DT alloy electron beam welded joints fatigue micro-crack initiation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.

    [12]

    Vinogradov A, Hashimoto S, Miura S. Crack initiation and propagation in〈110〉oriented copper single crystals under cyclic deformation[J]. Acta Metall. Mater, 1995, 43: 675 − 680. doi: 10.1016/0956-7151(94)00270-R

    [13]

    Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory[J]. International Journal of fatigue, 1999, 21(2): 109 − 119. doi: 10.1016/S0142-1123(98)00058-9

  • 期刊类型引用(2)

    1. 宾坤,唐贺清,姚屏,陈晔,王晓军. 不同脉冲、频率下的双丝匹配对焊缝的影响研究. 精密成形工程. 2022(06): 123-130 . 百度学术
    2. 张涛,王晓文. 一种带LCL滤波的双丝弧焊电源EMC设计. 焊接学报. 2021(04): 92-96+101-102 . 本站查看

    其他类型引用(3)

图(12)  /  表(3)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  107
  • PDF下载量:  110
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-07-05
  • 网络出版日期:  2021-02-04
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回