Effect of LaNd on the spreadability of Ti-13Zr-21Cu-9Ni brazing fillers and the properties of TC4 joint
-
摘要: 为了优化Ti-13Zr-21Cu-9Ni钎料性能、获得一种性能优良的Ti合金接头,向Ti-13Zr-21Cu-9Ni钎料中添加了稀土元素LaNd. 以应用普遍的TC4合金为母材,通过真空炉、场发射扫描电镜、X射线衍射仪等设备研究了稀土元素LaNd对Ti-13Zr-21Cu-9Ni钎料铺展性能及TC4接头性能的影响. 结果表明,随着LaNd添加量的增加,Ti-13Zr-21Cu-9Ni-xLaNd钎料的铺展面积和Ti-13Zr-21Cu-9Ni-xLaNd/TC4钎焊接头的抗剪强度先增大后减小. 当LaNd添加量为0.3%时,Ti-13Zr-21Cu-9Ni-xLaNd钎料铺展面积最大,最大值为0.74 cm2,较基体提高了88.8%;当LaNd添加量继续增加时,生成的Cu5La相会使钎料的铺展性能大幅降低. Ti-13Zr-21Cu-9Ni-xLaNd/TC4钎焊接头抗剪强度在LaNd添加量为0.3%时达到最大值,为157.1 MPa,较基体提高了45.2%. LaNd的最佳添加量应该为0.3%.Abstract: In order to optimize the properties of Ti-13Zr-21Cu-9Ni brazing fillers and obtain a good performance Ti alloy joint, rare earth element LaNd was added to Ti-13Zr-21Cu-9Ni brazing fillers. The commonly used TC4 alloy was used as the mother The effect of rare earth element LaNd on the spreading performance of Ti-13Zr-21Cu-9Ni brazing fillers and the performance of TC4 joints was studied by vacuum furnace, field emission scanning electron microscope, X-ray diffractometer and other equipment. The results showed that the spread area of Ti-13Zr-21Cu-9Ni-xLaNd brazing fillers and the shear strength of Ti-13Zr-21Cu-9Ni-xLaNd/TC4 brazed joints first increased and then decreased with the addition of LaNd increased. When the LaNd addition is 0.3%, Ti-13Zr-21Cu-9Ni-xLaNd brazing fillers has the largest spreading area, the maximum value is 0.74 cm2, which is 88.8% higher than the matrix; when the addition of LaNd continues to increase, the formed Cu5La phase greatly reduce the spreading performance of the brazing fillers. Ti-13Zr-21Cu-9Ni-xLaNd/TC4 brazed joint shear strength reaches the maximum when the LaNd addition is 0.3%, which is 157.1 MPa, which is 45.2% higher than the matrix. Therefore, the optimal addition of LaNd It should be around 0.3%.
-
-
-
[1] Gurrappa I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J]. Materials Characterization, 2003, 51(2−3): 131 − 139. doi: 10.1016/j.matchar.2003.10.006
[2] 张田仓, 李晶, 季亚娟, 等. TC4钛合金线性摩擦焊接头组织和力学性能[J]. 焊接学报, 2010, 31(2): 53 − 56. Zhang Tiancang, Li Jing, Ji Yajuan, et al. Microstructure and mechanical properties of TC4 titanium alloy linear friction welded joints[J]. Transactions of the China Welding Institution, 2010, 31(2): 53 − 56.
[3] 王晓阳, 曹健, 代翔宇, 等. Ag-Cu钎料钎焊ZTA陶瓷与TC4钛合金[J]. 焊接学报, 2019, 40(3): 47 − 51. doi: 10.12073/j.hjxb.2019400070 Wang Xiaoyang, Cao Jian, Dai Xiangyu, et al. Brazing of ZTA ceramics and TC4 titanium alloy with Ag-Cu brazing fillers[J]. Transactions of the China Welding Institution, 2019, 40(3): 47 − 51. doi: 10.12073/j.hjxb.2019400070
[4] Yamada M. An overview on the development of titanium alloys for non-aerospace application in Japan[J]. Materials Science and Engineering A, 1996, 213(1−2): 8 − 15. doi: 10.1016/0921-5093(96)10241-0
[5] Li Li, Li Xiaoqiang, Hu Ke, et al. Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 754 − 763. doi: 10.1016/S1003-6326(19)64985-X
[6] Qiu Q, Wang Y, Yang Z, et al. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive[J]. Materials and Design, 2016, 90(JAN.): 650 − 659.
[7] 杨长勇, 徐九华, 丁文锋, 等. 稀土镧对Ag-Cu-Ti钎料微观组织与性能的影响(英文)[J]. 南京航空航天大学学报, 2008, 25(3): 230 − 234. Yang Changyong, Xu Jiuhua, Ding Wenfeng, et al. Effects of rare earth element Nd on microstructure and properities of Ag-Cu-Ti brazing fillers alloy[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 25(3): 230 − 234.
[8] 王红娜. 稀土添加量对高强度钛基钎料性能的影响[D]. 洛阳: 河南科技大学, 2015. Wang Hongna. Effect of rare earth addition on properities of high strength titanium-based brazing fillers[D]. Luoyang: Henan University of Science and Technology, 2015.
[9] 邹禧. 钎焊[M]. 北京: 机械工业出版社, 1989. Zou Xi. Brazing[M]. Beijing: Mechanical Industry Press, 1989.
[10] Young T. An essay on the cohesion of fluids[J]. Philosophical Transaction of the Royal Society of London, 1805, 95: 65 − 87.
[11] 王要利, 程光辉, 张珂珂. Sn-2.5Ag-O.7Cu-0.1RE-xNi的润湿性能[J]. 材料热处理学报, 2016, 37(3): 24 − 29. Wang Yaoli, Cheng Guanghui, Zhang Keke. Wetting properties of Sn-2.5Ag-O. 7Cu-0.1RE-xNi[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 24 − 29.
[12] Liaw D W, Wu Z Y, Shiue R K, et al. Infrared vacuum brazing of Ti-6Al-4V and Nb using the Ti-15Cu-15Ni foil[J]. Materials Science and Engineering A, 2007, 25(4): 104 − 113.
[13] 徐光宪. 稀土(下册)[M]. 北京: 冶金工业出版社, 1995. Xu Guangxian. Rare Earths[M]. Beijing: Metallurgical Industry Press, 1995.
[14] 徐媛媛, 闫焉服, 李帅, 等. 循环周期对Sn3.0Ag0.5Cu/Cu钎焊接头界面化合物的影响[J]. 材料热处理学报, 2015, 36(1): 93 − 98. Xu Yuanyuan, Yan Yanfu, Li Shuai, et al. Effect of thermal cycles on intermetallic compounds of Sn3.0Ag0.5Cu/Cu and Cu brazing fillersing joint[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 93 − 98.
[15] Hong In-Ting, Koo Chun-Hao. Microstructural evolution and shear strength of brazing C103 and Ti-6Al-4V using Ti-20Cu-20Ni-20Zr filler metal[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(3): 247 − 252. doi: 10.1016/j.ijrmhm.2005.05.014
[16] 崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998. Cui Yuexian, Wang Changli. Analysis of metal fracture[M]. Harbin: Harbin Institute of Technology Press, 1998.
-
期刊类型引用(0)
其他类型引用(1)