Analysis of different occlusal modes and bite force of mandible
-
摘要: 为研究在不同咬合方式和不同咬合力下颌骨的受力情况,基于已有的头部CT数据,通过医疗软件Mimics提取下颌骨并建立三维模型,并对下颌骨进行重画网格、构造轮廓线、构造曲面片、构造格栅、拟合曲面等分析. 通过对正常的下颌骨以及3D打印钛合金植入物修复的下颌骨进行对比分析. 研究在不同咬合方式和不同咬合力的情况下,下颌骨的受力情况,分别得到下颌骨不同部位加载下的应力和位移分布情况. 结果表明,在3D打印钛合金植入物修复的下颌骨上加载成年男性前,后牙所能承受的最大咬合力时,下颌骨所受到的应力均小于正常下颌骨所受到的应力.Abstract: In order to study the stress of the mandible under different occlusal methods and different bite forces, based on the existing head CT data, the mandible was extracted through the medical software Mimics and the three-dimensional model was established, and the mandible was analyzed by redrawing the mesh, constructing the contour line, constructing the curved surface, constructing the grille, and fitting the surface. Through to the normal mandible and 3 d printing titanium implant restoration of mandibular were analyzed, and the results show that: in the 3 d printing on the titanium alloy implant restoration of mandibular adult male before and after loading teeth can withstand maximum force, mandibular by stress are less than normal mandible by stress.
-
Keywords:
- mandible /
- bite /
- stress /
- numerical analysis
-
-
表 1 食物咬合力大小(kg)
Table 1 Food bite force
压缩饼干 坚果 干枣 硬水果糖 烧饼 苹果 核桃仁 馒头 35.0 25.0 21.9 17.6 14.8 12.0 7.3 3.0 表 2 下颌骨各组织力学属性
Table 2 mechanical properties of the mandible tissues
名称 弹性模量E/104 Pa 泊松比γ 骨密质 1.37 0.3 松质骨 0.185 0.3 牙齿 2.0 0.3 表 3 钛合金性能参数
Table 3 performance parameters of titanium alloy
抗拉强度
Rm/GPa比强度
Po/(N·m−2)密度
ρ/(g·cm3)弹性模量
E/MPa导热系数/
K/(Wm−1K−1)泊松比
μ抗拉强度
Rm/MPa规定非比例延伸
强度Rp/MPa断后伸长率
A(%)断面收缩率
Z(%)1.0 23.5 4.5 1.1 × 105 8.0 0.3 ≥ 895.0 ≥ 825.0 ≥ 10.0 ≥ 25.0 -
[1] Zuo H S, Li H, Qi L, et al. Formation mechanism of defects in aluminum alloy during micro-droplet deposition[J]. Rare Metal Materials and Engineering, 2013, 42(8): 1596 − 1600.
[2] Yang G, Qi L, Luo J, et al. Uniform droplet spray forming slightly soluble drop key online testing system[J]. Chinese Journal of Scientific Instrument, 2009, 30(3): 590 − 597.
[3] 张晓萍, 颜永年. 熔融堆积成形过程温度场的模拟研究[J]. 中国机械工程, 2000, 11(10): 1101 − 1104. Zhang Xiaoping, Yan Yongnian. Simulation study of temperature field in the process of melting accumulation[J]. China Mechanical Engineering, 2000, 11(10): 1101 − 1104.
[4] 王天明, 金烨, 习俊通. FDM 工艺过程中丝材的粘结机理与热学分析[J]. 上海交通大学学报, 2006, 40(7): 1230 − 1234. Wang Tianming, Jin Ye, Xi Juntong. Bonding mechanism and thermal analysis of wire during FDM process[J]. Journal of Shanghai Jiaotong University, 2006, 40(7): 1230 − 1234.
[5] 李素丽, 魏正英, 卢秉恒. 基于ANSYS的车身柔性件点焊装配应力分析[J]. 焊接学报, 2014, 35(11): 14 − 18. Li Suli, Wei Zhengying, Lu Bingheng. Stress analysis of spot welding assembly of body flexible parts based on ANSYS[J]. Transactions of the China Welding Institution, 2014, 35(11): 14 − 18.
[6] Wang A, Xu C, Zhang C, et al. Experimental investigation of the properties of electrospun nanofibers for potential medical application[J]. Journal of Nanomaterials, 2015, 40(7): 1230 − 1238.
[7] 李素丽, 魏正英, 卢秉恒. 高温钛合金微滴沉积成形有限元分析[J]. 郑州大学学报:工学版, 2014, 4: 124 − 128. Li Suli, Wei Zhengying, Lu Bingheng. Finite element analysis of droplet deposition forming of high temperature titanium alloy[J]. Journal of Zhengzhou University (Engineering Science), 2014, 4: 124 − 128.
[8] Orme M, Smith R. Enhanced aluminum properties by means of precise droplet deposition[J]. Journal of Manufacturing Science and Engineering, 2000, 122(3): 484 − 493.
[9] Li S, Wei Z, Du J, et al. The fusion process of successive droplets impinging onto a substrate surface[J]. Applied Physics A, 2015, 120(1): 35 − 42.
[10] Li S, Wei Z, Du J, et al. A numerical analysis on the metal droplets impacting and spreading out on the substrate[J]. Rare Metal Materials and Engineering, 2017, 46(4): 893 − 898.
[11] Wei P, Wei Z, Li S, et al. Splat formation during plasma spraying for 8 mol% yttria-stabilized zirconia droplets impacting on stainless steel substrate[J]. Applied Surface Science, 2014, 321: 538 − 547.
[12] Luo Q B, Huang C Z, Orme M. Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts[J]. Science China Technological Sciences, 2011, 54(7): 1833 − 1840.
[13] 程康杰. 修复下颌骨缺损的复合结构植入体优化设计及制备研究[D]. 杭州: 浙江工业大学, 2020. Cheng Kangjie. Optimal design and preparation of composite structure implant for repairing mandibular defect [D]. Hangzhou: Zhejiang University of Technology, 2020.
[14] 李长春. 增材制造个性化钛合金在下颌骨缺损修复重建中的临床应用研究[D]. 南京: 南京医科大学, 2018. Li Changchun. Clinical application of additive manufacturing personalized titanium alloy in mandibular defect repair and reconstruction [D]. Nanjing: Nanjing Medical University, 2018.
-
期刊类型引用(0)
其他类型引用(1)