高级检索

Al0.1CoCrFeNi高熵合金/TA2钛复合板爆炸焊接试验及性能测试

Explosive welding and performance test of Al0.1CoCrFeNi high-entropy alloy/TA2 composite plate

  • 摘要: 高熵合金是一种新兴的多主元合金,具有作为结构材料的潜力,但对高熵合金焊接工艺的研究还很有限. 通过爆炸焊接实现了Al0.1CoCrFeNi高熵合金与TA2工业纯钛的复合连接,并研究了Al0.1CoCrFeNi/TA2复合板的微观结构和力学性能. 结果表明,Al0.1CoCrFeNi/TA2复合板具有不连续熔化区的波状结合界面,熔化区中呈现多元素混合状态,并且具有较均匀的元素分布. 熔化区的硬度大于界面附近的硬度,并且硬度随着离界面距离的增加逐渐降低,但仍高于原始材料. 相对于焊接前的Al0.1CoCrFeNi高熵合金的强度(398 MPa),爆炸焊接后的Al0.1CoCrFeNi/TA2复合板强度明显提高(567 MPa),但断后伸长率降低. 说明爆炸焊接可以有效的将Al0.1CoCrFeNi高熵合金与TA2工业纯钛相结合,而形成的复合板具有良好的力学性能.

     

    Abstract: High-entropy alloy (HEA) is an emerging material which possesses great potential as a structure material, but there are relatively few studies devoted to HEA joining technology. The TA2 commercial pure titanium plate and Al0.1CoCrFeNi HEA are joined by explosive welding technology. The microstructure analysis and mechanical tests of Al0.1CoCrFeNi/TA2 composite plate are conducted. These results show that the Al0.1CoCrFeNi/TA2 composite plate possesses a wavy bonding interface with a discontinuous melted zone. Moreover, the melted zone presents a multi-element mixed state, and a relatively uniform element distribution occurs in the melted zone. The hardness of the melting zone is greater than that of TA2 side and Al0.1CoCrFeNi HEA side. And it gradually decreases with the increase of the distance from the interface. However, the hardness of the composite plate is still higher than that of the parent materials. Compared with the strength of the Al0.1CoCrFeNi HEA plate (398 MPa), the strength of the Al0.1CoCrFeNi/TA2 composite plate after explosive welding is significantly increased (567 MPa). On the contrary, elongation is reduced after explosive welding. The results tests show that explosive welding is an effective method for joining TA2 commercial pure titanium with Al0.1CoCrFeNi high-entropy alloy, and the welded composite plate shows great mechanical performance.

     

/

返回文章
返回