高级检索

固体润滑剂对无镀铜焊丝导电嘴磨损性能的影响

曹晓涛, 栗卓新, WolfgangTillmann, 孟波, 乔吉春

曹晓涛, 栗卓新, WolfgangTillmann, 孟波, 乔吉春. 固体润滑剂对无镀铜焊丝导电嘴磨损性能的影响[J]. 焊接学报, 2020, 41(9): 22-27. DOI: 10.12073/j.hjxb.20200325004
引用本文: 曹晓涛, 栗卓新, WolfgangTillmann, 孟波, 乔吉春. 固体润滑剂对无镀铜焊丝导电嘴磨损性能的影响[J]. 焊接学报, 2020, 41(9): 22-27. DOI: 10.12073/j.hjxb.20200325004
CAO Xiaotao, LI Zhuoxin, Wolfgang Tillmann, Meng bo, Qiao Jichun. Effect of solid lubricant on contact tip wear performance of non-copper coated solid wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 22-27. DOI: 10.12073/j.hjxb.20200325004
Citation: CAO Xiaotao, LI Zhuoxin, Wolfgang Tillmann, Meng bo, Qiao Jichun. Effect of solid lubricant on contact tip wear performance of non-copper coated solid wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 22-27. DOI: 10.12073/j.hjxb.20200325004

固体润滑剂对无镀铜焊丝导电嘴磨损性能的影响

基金项目: 国家自然科学基金资助项目(51574011);北京市自然科学基金资助项目(2152008);泰山产业领军人才资助项目(2019).
详细信息
    作者简介:

    曹晓涛,1991年出生,硕士;主要从事无镀铜焊丝的研制和焊接工艺;Email:1197537093@emails.bjut.edu.cn.

    通讯作者:

    栗卓新,教授,博士研究生导师. Email:zhxlee@bjut.edu.cn.

  • 中图分类号: TG 424

Effect of solid lubricant on contact tip wear performance of non-copper coated solid wire

  • 摘要: 采用扫描电镜和体视显微镜研究了固体润滑剂对无镀铜焊丝导电嘴磨损性的影响. 结果表明,随着固体润滑剂成分的改变,导电嘴磨损形式发生变化,导电嘴质量损失率和导电嘴孔径磨损率随之改变;焊丝表面涂敷以石墨 + 纳米Fe2O3和石墨 + 纳米Fe3O4为主的固体润滑剂时,磨损形式以轻微磨粒磨损为主,导电嘴质量损失率和孔径磨损率显著降低,分别为0.27%和0.31%、16.2%和22.3%,导电嘴温度是影响固体润滑剂润滑性的重要因素,以石墨 + 纳米Fe2O3和石墨 + 纳米Fe3O4为主的固体润滑剂能实现从室温到较高温度范围内的连续润滑.
    Abstract: The effects of solid lubricants on contact tip wear performance of non-copper coated solid wire were investigated by scanning electron microscopy (SEM) and stereoscopic microscope. It was found that the wear form of contact tip varied with composition of solid lubricant, therefore, the mass and aperture wear loss rate of contact tip were changed. When surface coatings of non-copper coated solid wire were mainly composed of graphite + nano Fe2O3, the mass and aperture wear loss rate of contact tip were 0.27%, 16.2%, respectively. Coated with graphite + nano Fe3O4, contact tip wear perfermance of non-copper coated solid wire were better, the mass and aperture wear loss rate wear of contact tip were 0.31%, 22.3%, respectively. Slight abrasive wear was wear form of contact tip. Contact tip temperature had an important role on the lubricity of solid lubricants, the solid lubricants mainly composed of graphite + nano Fe2O3 or graphite + nano Fe3O4 can achieve continuous lubrication from room temperature to higher temperature range.
  • 图  1   导电嘴孔径初始形貌

    Figure  1.   Initial aperture morphology of contact tip

    图  2   固体润滑剂对导电嘴磨损性的影响

    Figure  2.   Effect of solid lubricants on contact tip wear

    图  3   导电嘴内孔表面磨损形貌

    Figure  3.   Contact tip wear morphology. (a) N0; (b) N1; (c) N2; (d) N3; (e) N4

    图  4   焊接过程中导电嘴温度趋势

    Figure  4.   Temperature trends of contact tube during welding

    图  5   严重/轻微磨损机制随纳米Fe2O3粒径和载荷转变的磨损图

    Figure  5.   Wear map of severe and mild wear regimes in variations of diameter of supplied Fe2O3 oxide particles and applied load

    图  6   纳米颗粒降低实际接触区域机制示意图

    Figure  6.   Illustration of the proposed mechanism, reduction of the real area of contact by the nanoparticles

    表  1   无镀铜焊丝表面固体润滑剂成分设计(质量分数,%)

    Table  1   Component design of surface solid lubricant on of non-copper coated solid wire

    焊丝编号固体润滑剂编号MoS2石墨纳米Fe2O3纳米Fe3O4其余成分
    N00100
    N116040
    N226040
    N33402040
    N44402040
    下载: 导出CSV

    表  2   表面固体润滑剂主要成分性质

    Table  2   Main component properties of surface solid lubricant

    固体润滑剂主要成分纯度α(%)粒径d/nm
    MoS2 98 3500
    石墨 98 3000
    纳米Fe2O3 99.9 50
    纳米Fe3O4 99.9 50
    下载: 导出CSV

    表  3   QCr1Zr导电嘴元素组成(质量分数,%)

    Table  3   Element composition of QCr1Zr contact tip

    AlMgCrZrFeSiP杂质总和
    0.1 ~ 0.25 0.1 ~ 0.25 0.1 ~ 0.8 0.1 ~ 0.6 0.5 0.5 0.1 0.5
    下载: 导出CSV

    表  4   焊接工艺参数

    Table  4   Welding parameters

    焊接电流I/A电弧电压U/V焊接速度v/(mm·min−1)保护气体气体流量Q/(L·min−1)焊丝伸出长度L/mm焊接时间t/h
    300 33 350 CO2 20 20 1
    下载: 导出CSV

    表  5   不同固体润滑剂下无镀铜焊丝导电嘴磨损的测试数据

    Table  5   Test data of contact tip wear of non-copper coated solid wire with different solid lubricants

    固体润滑剂编号导电嘴质量损失导电嘴孔径磨损孔径图片
    初始质量
    m/g
    焊后质量
    M/g
    质量损失率
    Am(%)
    初始孔径
    D0/mm
    焊后最大孔径
    Dw/mm
    孔径磨损率
    Aw(%)
    012.486 212.391 30.761.382.6289.9
    112.496 712.410 50.691.432.5477.6
    212.470 312.403 00.541.412.3566.7
    312.467 912.434 20.271.421.6516.2
    412.418 812.380 30.311.391.722.3
    下载: 导出CSV

    表  6   各EDS点元素分析结果(原子分数,%)

    Table  6   Elements composition of analysis point

    各点CuFeCMoOCrZrSKCa
    168.87.21.417.30.30.12.12.8
    235.63.21.240.29.30.40.16.81.22.0
    352.92.524.917.20.30.20.91.1
    428.412.738.616.50.20.22.60.8
    519.817.938.721.20.20.20.51.5
    下载: 导出CSV
  • [1] 熊腊森. 焊接工程基础[M]. 北京: 机械工业出版社, 2002.

    Xiong Lasen. Foundation of welding engineering[M]. Beijing: China Machine Press, 2002.

    [2]

    Zhang H W, Su J H, Chen J. Status and development trend of the welding consumables industry in China[J]. China Welding, 2017, 26(2): 23 − 31.

    [3]

    Gurevich S M. Some characteristic features of the welding of titanium with a non-consumable electrode using fluxes[J]. Avt Svarka, 1996, 12(12): 13 − 16.

    [4]

    Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair[J]. Tribology-Materials, Surfaces & Interfaces, 2014, 8(2): 74 − 84.

    [5]

    Dai W, Kheireddin B, Gao H, et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102(5): 88 − 98.

    [6]

    Shimizu H, Itoh K, Masaie N, et al. Feedability of wires during metal active gas welding[J]. Science and Technology of Welding and Joining, 2006, 11(1): 81 − 93. doi: 10.1179/174329306X77876

    [7]

    Shimizu H, Yokota Y, Mizuno M, et al. Wear mechanism in contact tube[J]. Science and Technology of Welding and Joining, 2006, 11(1): 94 − 105. doi: 10.1179/174329306X77885

    [8]

    Xie G X, Guo D, Luo J B. Lubrication under charged conditions[J]. Tribology International, 2015, 84(11): 22 − 35.

    [9]

    Hirotaka K. Severe-mild wear transition by supply of oxide particles on sliding surface[J]. Wear, 2003, 255(1): 426 − 429.

    [10]

    Zhou Y, Wang S Q, Huang K Z, et al. Improvement of tribological performance of TC11 alloy via formation of a double-layer tribo-layer containing graphene/Fe2O3 nanocomposite[J]. Tribology International, 2017, 109(1): 485 − 495.

    [11]

    Ghaednia H, Jackson R L, Khodadadi J M. Experimental analysis of stable CuO nanoparticle enhanced lubricants[J]. Journal of Expermental Nonoscience, 2015, 10(1): 1 − 18.

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(6)  /  表(6)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  24
  • PDF下载量:  27
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-03-24
  • 网络出版日期:  2020-12-02
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回