Effect of solid lubricant on contact tip wear performance of non-copper coated solid wire
-
摘要: 采用扫描电镜和体视显微镜研究了固体润滑剂对无镀铜焊丝导电嘴磨损性的影响. 结果表明,随着固体润滑剂成分的改变,导电嘴磨损形式发生变化,导电嘴质量损失率和导电嘴孔径磨损率随之改变;焊丝表面涂敷以石墨 + 纳米Fe2O3和石墨 + 纳米Fe3O4为主的固体润滑剂时,磨损形式以轻微磨粒磨损为主,导电嘴质量损失率和孔径磨损率显著降低,分别为0.27%和0.31%、16.2%和22.3%,导电嘴温度是影响固体润滑剂润滑性的重要因素,以石墨 + 纳米Fe2O3和石墨 + 纳米Fe3O4为主的固体润滑剂能实现从室温到较高温度范围内的连续润滑.Abstract: The effects of solid lubricants on contact tip wear performance of non-copper coated solid wire were investigated by scanning electron microscopy (SEM) and stereoscopic microscope. It was found that the wear form of contact tip varied with composition of solid lubricant, therefore, the mass and aperture wear loss rate of contact tip were changed. When surface coatings of non-copper coated solid wire were mainly composed of graphite + nano Fe2O3, the mass and aperture wear loss rate of contact tip were 0.27%, 16.2%, respectively. Coated with graphite + nano Fe3O4, contact tip wear perfermance of non-copper coated solid wire were better, the mass and aperture wear loss rate wear of contact tip were 0.31%, 22.3%, respectively. Slight abrasive wear was wear form of contact tip. Contact tip temperature had an important role on the lubricity of solid lubricants, the solid lubricants mainly composed of graphite + nano Fe2O3 or graphite + nano Fe3O4 can achieve continuous lubrication from room temperature to higher temperature range.
-
-
表 1 无镀铜焊丝表面固体润滑剂成分设计(质量分数,%)
Table 1 Component design of surface solid lubricant on of non-copper coated solid wire
焊丝编号 固体润滑剂编号 MoS2 石墨 纳米Fe2O3 纳米Fe3O4 其余成分 N0 0 — — — — 100 N1 1 60 — — — 40 N2 2 — 60 — — 40 N3 3 — 40 20 — 40 N4 4 — 40 — 20 40 表 2 表面固体润滑剂主要成分性质
Table 2 Main component properties of surface solid lubricant
固体润滑剂主要成分 纯度α(%) 粒径d/nm MoS2 98 3500 石墨 98 3000 纳米Fe2O3 99.9 50 纳米Fe3O4 99.9 50 表 3 QCr1Zr导电嘴元素组成(质量分数,%)
Table 3 Element composition of QCr1Zr contact tip
Al Mg Cr Zr Fe Si P 杂质总和 0.1 ~ 0.25 0.1 ~ 0.25 0.1 ~ 0.8 0.1 ~ 0.6 0.5 0.5 0.1 0.5 表 4 焊接工艺参数
Table 4 Welding parameters
焊接电流I/A 电弧电压U/V 焊接速度v/(mm·min−1) 保护气体 气体流量Q/(L·min−1) 焊丝伸出长度L/mm 焊接时间t/h 300 33 350 CO2 20 20 1 表 5 不同固体润滑剂下无镀铜焊丝导电嘴磨损的测试数据
Table 5 Test data of contact tip wear of non-copper coated solid wire with different solid lubricants
固体润滑剂编号 导电嘴质量损失 导电嘴孔径磨损 孔径图片 初始质量
m/g焊后质量
M/g质量损失率
Am(%)初始孔径
D0/mm焊后最大孔径
Dw/mm孔径磨损率
Aw(%)0 12.486 2 12.391 3 0.76 1.38 2.62 89.9 1 12.496 7 12.410 5 0.69 1.43 2.54 77.6 2 12.470 3 12.403 0 0.54 1.41 2.35 66.7 3 12.467 9 12.434 2 0.27 1.42 1.65 16.2 4 12.418 8 12.380 3 0.31 1.39 1.7 22.3 表 6 各EDS点元素分析结果(原子分数,%)
Table 6 Elements composition of analysis point
各点 Cu Fe C Mo O Cr Zr S K Ca 1 68.8 7.2 1.4 — 17.3 0.3 0.1 — 2.1 2.8 2 35.6 3.2 1.2 40.2 9.3 0.4 0.1 6.8 1.2 2.0 3 52.9 2.5 24.9 — 17.2 0.3 0.2 — 0.9 1.1 4 28.4 12.7 38.6 — 16.5 0.2 0.2 — 2.6 0.8 5 19.8 17.9 38.7 — 21.2 0.2 0.2 — 0.5 1.5 -
[1] 熊腊森. 焊接工程基础[M]. 北京: 机械工业出版社, 2002. Xiong Lasen. Foundation of welding engineering[M]. Beijing: China Machine Press, 2002.
[2] Zhang H W, Su J H, Chen J. Status and development trend of the welding consumables industry in China[J]. China Welding, 2017, 26(2): 23 − 31.
[3] Gurevich S M. Some characteristic features of the welding of titanium with a non-consumable electrode using fluxes[J]. Avt Svarka, 1996, 12(12): 13 − 16.
[4] Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair[J]. Tribology-Materials, Surfaces & Interfaces, 2014, 8(2): 74 − 84.
[5] Dai W, Kheireddin B, Gao H, et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102(5): 88 − 98.
[6] Shimizu H, Itoh K, Masaie N, et al. Feedability of wires during metal active gas welding[J]. Science and Technology of Welding and Joining, 2006, 11(1): 81 − 93. doi: 10.1179/174329306X77876
[7] Shimizu H, Yokota Y, Mizuno M, et al. Wear mechanism in contact tube[J]. Science and Technology of Welding and Joining, 2006, 11(1): 94 − 105. doi: 10.1179/174329306X77885
[8] Xie G X, Guo D, Luo J B. Lubrication under charged conditions[J]. Tribology International, 2015, 84(11): 22 − 35.
[9] Hirotaka K. Severe-mild wear transition by supply of oxide particles on sliding surface[J]. Wear, 2003, 255(1): 426 − 429.
[10] Zhou Y, Wang S Q, Huang K Z, et al. Improvement of tribological performance of TC11 alloy via formation of a double-layer tribo-layer containing graphene/Fe2O3 nanocomposite[J]. Tribology International, 2017, 109(1): 485 − 495.
[11] Ghaednia H, Jackson R L, Khodadadi J M. Experimental analysis of stable CuO nanoparticle enhanced lubricants[J]. Journal of Expermental Nonoscience, 2015, 10(1): 1 − 18.
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)