高级检索

钢管混凝土拱桥大管径拱肋环焊缝焊接数值模拟

杨阳, 邓年春, 郭晓

杨阳, 邓年春, 郭晓. 钢管混凝土拱桥大管径拱肋环焊缝焊接数值模拟[J]. 焊接学报, 2020, 41(10): 79-86. DOI: 10.12073/j.hjxb.20200322002
引用本文: 杨阳, 邓年春, 郭晓. 钢管混凝土拱桥大管径拱肋环焊缝焊接数值模拟[J]. 焊接学报, 2020, 41(10): 79-86. DOI: 10.12073/j.hjxb.20200322002
YANG Yang, DENG Nianchun, GUO Xiao. Simulation of girth welding seam of large diameter arch rib of concrete-filled steel tube arch bridge[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 79-86. DOI: 10.12073/j.hjxb.20200322002
Citation: YANG Yang, DENG Nianchun, GUO Xiao. Simulation of girth welding seam of large diameter arch rib of concrete-filled steel tube arch bridge[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(10): 79-86. DOI: 10.12073/j.hjxb.20200322002

钢管混凝土拱桥大管径拱肋环焊缝焊接数值模拟

详细信息
    作者简介:

    杨阳,1992年出生,硕士;主要从事钢管混凝土拱桥焊接及数值模拟的研究;Email:958167761@qq.com.

    通讯作者:

    邓年春,教授级高级工程师;Email:dengnch@gxu.edu.cn.

  • 中图分类号: TG 404;TU 391

Simulation of girth welding seam of large diameter arch rib of concrete-filled steel tube arch bridge

  • 摘要: 为了研究大管径拱肋环焊缝焊接接头残余应力分布规律,用ANSYS软件对直径1 400 mm,厚度26 mm的拱肋环焊缝进行了焊接温度场及应力场数值模拟. 分析了焊接过程的温度分布云图及应力分布云图,获取了特征节点的热循环曲线,分析了焊后内外表面各残余应力分布情况及内表面残余应力形成过程. 结果表明,等效残余拉应力峰值出现在钢管内表面焊缝底部. 焊后径向和环向残余应力在内、外表面大部分区域形成压应力,轴向残余应力在内、外表面形成拉-压相间的应力分布,等效残余应力在内、外表面均为拉应力. 残余应力形成过程中,第2 ~ 7层的径向、环向、轴向及等效残余应力曲线与第1层径向、环向、轴向及等效残余应力曲线相比,除在波峰及波谷处有较小变化外,其它区域残余应力几乎不变.
    Abstract: In order to study the residual stress distribution law of the large diameter arch rib girth weld joint, this paper uses ANSYS software to carry out the numerical simulation of the welding temperature field and stress field of the arch rib girth weld with a diameter of 1 400 mm and a thickness of 26 mm. The thermal cycle curve of the characteristic node is obtained,The contour of temperature and the stress distribution as well as the residual stress distribution and formation process are analyzed. The results show that the peak value of the equivalent tensile residual stress appears at the bottom of the weld on the inner surface of the steel pipe. the radial and circumferential residual stresses form compressive stress in most areas of the inner and outer surfaces in the end. The axial residual stress forms a tension-compression stress distribution and The equivalent residual stresses are tensile stress on both surfaces. During the formation of residual stress,the residual stress curves including the radial,the circumferential,the axial and tht equivalent of the 2nd to 7th layers are almost unchanged coMpared with the first layer, except for small changes in the wave trough and peak.
  • 石油是工业发展中的“血脉”,为保证石油的运输工作,必须选择兼具高强度和耐腐蚀性能好的材料,尤其是耐化学腐蚀[1]、电化学腐蚀[2]和微生物腐蚀[3]. API5LB级钢承载能力强、强度高,广泛应用于石油工业,但极易受腐蚀,特别是在酸性环境中[4];Inconel 625镍基合金在表面形成Cr2O3致密的钝化膜,使其能够服役于高温氧化环境中,而在非氧化环境中,钼和镍的协同作用下具有抵抗点蚀和晶间腐蚀的能力[5].由此,镍/钢复合板具备优良的综合性能,能满足石油运输的使用要求.目前制备镍/钢复合板的方法有爆炸法[6]、轧制法[7]和堆焊法[8]等,其中爆炸法环境污染较大,轧制法时板材的几何形状受到限制[9-10];而堆焊法将镍合金材料直接堆焊沉积在高强钢内壁与石油直接接触,3 ~ 5 mm的镍基合金堆焊层厚度即可满足石油的耐腐蚀性能,成本低,效率高,具有无法比拟的优势[11-13].

    关于Inconel 625镍基合金堆焊的研究主要集中在如何保证高沉积效率下实现镍/钢界面充分冶金结合,同时尽可能降低钢基材对镍基合金的稀释和控制镍/钢复合板的变形,前者要求热量较大,后者要求热量较小.在众多堆焊方法中以钨极引弧作为热源的方法具有热输入小,堆焊变形小,易实现自动化控制,满足热量小的要求,但其沉积速率低. Sing等人[14]通过增加焊接电流来提高沉积速率,但避免不了基材稀释率的提高;Singhal等人[15]采用二氧化碳气体保护焊堆焊,虽能在高沉积速率下获得较低稀释率的堆焊层,但结合界面剪切强度低.

    单钨极热丝TIG堆焊,可通过钢丝绳作为导轨控制焊枪施焊位置,可以实现复杂工件的堆焊,但传统单钨极热丝TIG焊效率低,虽然增大电流强度[14]、添加助焊剂[16]、K-TIG(锁孔氩弧焊)[17]等方法能够增大熔深,提高沉积率,但稀释率难以控制. Kobayashi等人[19]1998年在传统的TIG焊枪内设置两个相互绝缘的钨极,并分别由两个独立的焊接电源供电,通过施加周期互补的脉冲电流,成功的焊接了体积高达18 000 m3的9%Ni的液化天然储气罐.基于此,提出了双钨极热丝TIG堆焊技术,实现输油管道的内壁堆焊. 双钨极分别由两台独立电源产生多种组合波形,既能保障在高沉积速率下熔池能量的需求,同时又能调节阳极斑点,避免管道内出现较大的弯曲与扭矩变形,这一技术不仅可以提高堆焊层沉积效率,实现熔池扁平化,熔池内还能形成类似于机械搅拌的涡流,同时双钨极热丝TIG堆焊相对于单钨极热丝TIG堆焊熔宽更大,焊枪步径加大,堆焊相同尺寸管道,焊接速度更快,焊接平均热输入更低,也有效的解决了单钨极热丝TIG在高热输入下高稀释率的问题[19-21].尤其是在堆焊Inconel 625镍基合金时,可以解决因液相流动性较差造成的小气孔和裂纹等问题.

    文中基于最新研制的双钨极热丝TIG设备在高强钢管内壁堆焊两层Inconel 625镍基合金,分析新工艺下镍基合金堆焊层的微观组织构成、硬度及耐腐蚀性能. 另外,由于Inconel 625镍基合金焊接过程中Nb和Mo等元素出现严重偏析,凝固时Laves相和Nb次生相析出,使焊缝韧性、耐腐蚀性、疲劳和蠕变断裂强度显著下降[22-23]. 鉴于此对Inconel 625镍基合金堆焊层进行不同温度下的固溶处理,探索固溶处理工艺对堆焊层组织和性能的影响,最终旨在获得满足使用要求的输油管道.

    试验母材选用热轧无缝钢管,牌号为API 5L-46th PSL1 Gr.B,其外径和壁厚尺寸分别为323.9 mm和9.53 mm. 钢管内堆焊层所用是直径为1.2 mm的SFA/AWS A5.14,ERNiCrMo-3焊丝,其化学成分见表1.

    表  1  Gr.B级钢和ERNiCrMo-3焊丝的化学成分(质量分数,%)
    Table  1.  Chemical composition of Gr.B steel and ERNiCrMo-3 welding wire
    材料 C Si Mn Ni Cr Mo Fe Nb Al Ti
    Gr.B 0.190 0 0.250 0.400 0.04 0.01 0.003 98.770 0.004 0.002
    ERNiCrMo-3 0.009 3 0.026 0.012 64.31 22.18 9.080 0.101 3.730 0.2 0.300
    下载: 导出CSV 
    | 显示表格

    采用双钨极热丝TIG在12 m无缝钢管内水平轴向堆焊镍基合金,两把焊枪悬挂在钢丝绳上,两焊枪间距为450 mm,两个钨极的夹角为25° ~ 35°,两个钨极之间间距为0.8 ~ 1.2 mm,在堆焊过程中焊枪固定,双钨极形成共熔池,钢管旋转. 双钨极分别由一个5 A,10.2 V电源和450 A,28 V电源控制,两根ERNiCrMo-3焊丝分别由5 A,10 V和200 A,10 V的热丝电源进行预热. 堆焊过程中的焊接电压为10 ~ 14 V,焊接电流为30 ~ 50 A,焊接速度为1 000 ~ 1 400 mm/min,在钢管上堆焊两层,堆焊层厚度约为3 ~ 3.5 mm, 堆焊过程实物图和示意图如图1所示. 采用双钨极独立耦合两台焊接电源阳极,工件作为双电弧共熔池的公共阳极接驳点,构建双送丝导向装置与独立热丝电源组配系统,保护气体为氩气. 对堆焊后的镍合金/钢进行固溶处理,工艺分别为800 ℃ × 2 h和900 ℃ × 2 h,均进行水淬.

    图  1  堆焊过程实物图和示意图
    Figure  1.  Physical drawings and schematic drawings of surfacing welding process. (a) photo of pipeline cladding application; (b) photo of dual-torch TIG welding system; (c) schematic diagram of dual-power dual-tungsten parallel configuration

    线切割截取堆焊态下和固溶处理后的镍/钢试样,经过研磨、抛光后,使用10%(质量分数)草酸溶液在电压24 V下,电解10 ~ 12 s. 采用光学显微镜和型号为Zeiss Merlin Compact的电子显微镜对镍合金堆焊层进行微观组织和能谱点分析,对镍/钢界面进行线扫描,分析合金中主要元素在界面两侧的分布状态.

    采用型号为KB30S-FA的全自动维氏硬度计,依据国家标准GB/T 4340.1—2009《金属材料 维氏硬度试验 第1部分:试验方法》对焊态和热处理后的镍/钢试样进行显微硬度测量,测量过程中载荷为1 Pa,保载时间为15 s,以镍/钢界面为基准点向钢层及镍基合金层进行测试,每个点间隔0.5 mm,每个试样测量9个点.

    对堆焊态和固溶处理后的镍/钢样品进行电化学腐蚀试验,沿着距离镍合金/钢界面层分别为0.5 mm,1 mm和1.5 mm处取样,试样尺寸分别为10 mm × 10 mm × 0.5 mm,10 mm × 10 mm × 1.0 mm和10 mm × 10 mm × 1.5mm. 试验采用三电极体系,铂与饱和甘汞电极分别为辅助电极和参比电极,待测试样为工作电极,用去离子水制备3.5%NaCl溶液作为腐蚀介质. 为了去除空气中形成的氧化膜,将试样置于腐蚀液中,在−1.2 V(SHE)的电位下极化180 s,随后浸泡1 h,直到开路电位(OCP)达到准稳态后测量极化曲线,以评估各样品的耐点蚀性能.将待测试样置于0.5 V(SHE)恒电位的钝化电位极化2 h,确保熔覆层表面生成稳定钝化膜. 采用X射线光电子能谱仪(thermo scientific nexsa)对钝化膜的元素成分进行半定量分析,使用标准峰(C1s,284.8 eV)对所有元素峰进行校正.

    图2为焊态和热处理态Inconel 625堆焊层横截面的光学显微形貌,图3图2中红色方框内相对应的镍基合金堆焊层放大. 图2(a)为焊态下镍/钢复合板的全貌,结合图3(a),可见镍基合金堆焊第一层沿着钢基体向上垂直生长,呈树枝状,且有一枝晶间距. 堆焊第二层晶粒尺寸大于堆焊第一层晶粒,这是由于第二层堆焊过程时对第一层顶部进行了重熔,细化了晶粒. 另外,第二层堆焊合金以第一层合金面为形核点进行凝固,晶粒生长方向开始变得杂乱,第二层堆焊合金层组织可以看出枝晶间距明显增大. 钢侧热影响区显微组织主要由魏氏组织组成,组织严重不均匀.

    图  2  Inconel 625堆焊层横截面微观形貌
    Figure  2.  Cross-section microstructure morphology of Ni/steel surfacing plates. (a) as-welded state; (b) solution treatment at 800 ℃; (c) solution treatment at 900 ℃
    图  3  镍基合金堆焊层微观组织形貌
    Figure  3.  Enlarged view on microstructure morphology of Ni-based alloy surfacing layers . (a) as-welded state; (b) solution treatment at 800 ℃; (c) solution treatment at 900 ℃

    对镍/钢复合板进行800 ℃固溶处理后,钢侧热影响区中组织得到明显改善,主要由块状铁素体和粒状贝氏体组成,镍基合金堆焊第一层和第二层组织明显细化,如图2(b)和图3(b)所示. 对镍/钢复合板进行900 ℃固溶处理后,热影响区与基材组织趋于一致,主要由贝氏体组成,且贝氏体呈团状分布,如图2(c)和图3(c)所示.

    图4为焊态和固溶处理镍基合金堆焊层的SEM形貌. 焊态(图4(a)和图4(d)),镍基合金堆焊层中枝晶状组织间含有较多的浅灰色团状物相1号和深灰色小块状颗粒2号;固溶处理温度为800 ℃时(图4(b)b和图4(e)),枝晶状组织之间物相(1号和2号)开始减少;当固溶处理温度为900 ℃时(图4(c)和图4(f)),枝晶状组织之间物相(1号和2号)进一步减少,同时有针状物相3号出现.对图中特征点进行能谱点分析结果见表2. 根据表2结果可以推测,1号为Laves相,即A2B型相:A可能为Ni,Cr和Fe元素,B可能为Nb,Mo和Ti元素,2号可能为碳化物沉淀相(如NbC),3号可能为δ相.

    图  4  镍基合金堆焊层形貌及局部放大
    Figure  4.  Morphologies and corresponding local magnified image in the nickel-based alloy surfacing layer . (a) as-welded state; (b) solution treatment at 800 ℃; (c) solution treatment at 900 ℃; (d) Fig. 4(a) magnified view; (e) Fig. 4(b) magnified view; (f) Fig. 4(c) magnified view
    表  2  镍基合金堆焊层中特征点能谱分析(质量分数,%)
    Table  2.  Energy spectrum analysis results of characteristic points in nickel-based alloy surfacing layer
    特征点NiCrNbFeMoTi推测物相
    1号43.2716.0510.1919.427.024.05Laves
    2号13.383.2875.427.800.12NbC
    3号58.3217.938.837.297.350.28δ
    下载: 导出CSV 
    | 显示表格

    625镍基合金中Nb和Mo主要起到提高强度和耐腐蚀性的作用,但这两种元素特别容易发生偏析. 在镍基合金堆焊层凝固时,首先从液相中析出镍基枝晶状奥氏体相,Nb,Mo和Ti等元素发生偏析并富集在枝晶间,与C形成碳化物沉淀相, 同时由Ni,Cr,Fe和Nb,Mo,Ti等元素形成Laves相(A2B型化合物)的析出均会导致镍基合金中出现贫Mo和Cr区域,从而降低其耐腐蚀性能. 对镍/钢复合板进行800 ℃固溶处理后,Nb和Mo等合金元素在镍基奥氏体的固溶度增加,使得Laves相和NbC减少. 同时,镍基合金堆焊层中析出次级镍基奥氏体γ″相从晶界附近处析出,这种物相位错密度大. 上述组织构成有利于镍基合金堆焊层强度、硬度和耐腐蚀性的提升. 进一步增加固溶温度至900 ℃,镍基合金中元素呈现过饱和态,次级镍基奥氏体γ″相增多,大量这种亚稳态γ″相会引起晶格畸变,从而促使δ相在紧密堆积面的堆积断层中成核,最终组织中有稳定的针状δ相产生,过多的针状δ相对性能有恶化作用.

    图5是镍/钢堆焊复合板横截面硬度分布曲线.由图可知,焊态下从钢基材至镍基合金堆焊层硬度先下降后上升,在钢基材热影响区内硬度最低,这主要是因为焊态下钢基材中Fe元素向镍基合金堆焊层扩散,随后的快速冷却中热影响区魏氏体组织的形成而导致该区域的硬度值最低,这与Pu等人[24]结果一致.

    图  5  镍/钢复合层硬度分布
    Figure  5.  Hardness distribution of Ni/steel surfacing plates

    对镍/钢复合板进行固溶处理后,钢基材硬度随温度的升高而升高,镍基合金堆焊层的硬度随温度的升高先上升后下降. 固溶处理工艺使元素扩散更加充分,热影响区内组织逐渐均匀化,故钢基材硬度随温度的上升而增加. 固溶温度为800 ℃时,镍基堆焊层中析出次级镍基奥氏体γ″相,位错密度逐渐增加,镍基合金堆焊层硬度上升. 然而,当固溶温度为900 ℃时,树枝晶间的γ″相转变为稳定δ相后,硬度反而开始下降.

    为了探讨镍基堆焊层合金的耐腐蚀性能,在距离镍/钢界面0.5 mm,1.0 mm和1.5 mm处分别取样进行电化学腐蚀试验,不同位置试样的动电位极化曲线如图6所示. 由图6(a)和图6(b)可知,距离镍/钢界面层0.5 mm和1.0 mm时,固溶处理前后,镍基合金堆焊层的动极化曲线极为相似,耐腐蚀性能变化相差不大,均存在钝化区,钝化膜破碎后,耐腐蚀性能急剧下降. 用Cview软件对动电位极化曲线进行拟合得到自腐蚀电位与自腐蚀电流,结果见表3. 有研究表明腐蚀电位Ecorr反映着接头的腐蚀倾向,自腐蚀电流密度Icorr是相对较为常用且能够准确反映接头腐蚀速度的指标. Ecorr越大,Icorr越小,其耐腐蚀性能越好[25]. 根据表3结果可知,焊态下试样初始腐蚀电位最低,800 ℃固溶处理下试样初始腐蚀电位最高,自腐蚀电流密度最低,未见明显的点蚀电位.

    图  6  不同样品在3.5%NaCl溶液中的电化学极化曲线
    Figure  6.  Potential dynamic polarization curves of different specimens at 3.5%NaCl solution . (a) located at 0.5 mm away from the Ni/steel interface; (b) located at 1.0 mm away from the Ni/steel interface; (c) located at 1.5 mm away from the Ni/steel interface
    表  3  不同试样腐蚀电位及腐蚀电流密度
    Table  3.  Corrosion potential and corrosion current density of different specimens
    镍基合金堆焊层 腐蚀电位 Ecorr /V 腐蚀电流密度 Icorr /(10−7A·cm−2)
    焊态-0.5 mm −0.969 13 4.592 3
    800 ℃-0.5 mm −0.940 06 3.854 3
    900 ℃-0.5 mm −0.955 25 4.334 3
    焊态-1.0 mm −0.951 06 5.234 7
    800 ℃-1.0 mm −0.898 00 4.091 3
    900 ℃-1.0 mm −0.931 12 5.086 6
    焊态-1.5mm −0.547 06 1.995 9
    800 ℃-1.5mm −0.300 25 1.432 5
    900 ℃-1.5mm −0.423 06 3.189 1
    下载: 导出CSV 
    | 显示表格

    图7是不同位置的试样在3.5%NaCl溶液中的Nyquist图. 容抗弧半径的大小,可以反映试样表面腐蚀发生的快慢,从图7中可以观察到,经过800 ℃固溶处理后的试样容抗弧半径的最大,耐腐蚀性能最好.

    图  7  不同试样在3.5%NaCl溶液中的Nyquist图
    Figure  7.  Nyquist diagram of different samples in 3.5%NaCl solution . (a) located at 0.5 mm away from the Ni/steel interface; (b) located at 1.0 mm away from the Ni/steel interface; (c) located at 1.5 mm away from the Ni/steel interface

    图8为不同试样在3.5%NaCl溶液中的Bode图,从图中可以看出,所有试样在中频最大相位角都接近90°,表明所有试样在3.5%NaCl溶液中都具有钝化行为. 采用ZView软件拟合数据,拟合数据见表4,等效电路图如图9所示,其中 Rs为溶液电阻,Rf 表示钝化膜的电荷转移电阻,CPE(Qf)为恒相元,n为CPE弥散指数. 指数范围在0≤n≤1之间,其中接近 -1,0 或 1 的 n 值分别表示电感、电阻和电容行为. 所有试样的n值都接近1,显示出电容行为.从表4中可以看到,800 ℃固溶处理下试样Rf值最高,而焊态的Rf值最低,表明800 ℃固溶处理下试样的耐蚀性能最好,这与极化曲线测试结果一致.

    图  8  不同试样在3.5%NaCl溶液中的Bode图
    Figure  8.  Bode diagram of different samples in 3.5%NaCl solution . (a) located at 0.5 mm away from the Ni/steel interface; (b) located at 1.0 mm away from the Ni/steel interface; (c) located at 1.5 mm away from the Ni/steel interface
    表  4  不同试样电化学阻抗谱拟合数据
    Table  4.  Data of different samples were fitted by electrochemical impedance spectroscopy
    试样 溶液电阻Rs/(Ω·cm2) CPEQf/
    (10−5Ω−1·cm2·Ω-n)
    CPE弥散
    指数
    n
    电荷转
    移电阻
    Rf/(Ω·cm2)
    焊态-0.5 mm 4.596 6.941 2 0.879 41 28 092
    800 ℃-0.5 mm 4.486 9.485 9 0.833 45 38 204
    900 ℃-0.5 mm 4.968 6.936 3 0.869 85 36 496
    焊态-1.0 mm 4.876 8.434 8 0.854 74 35 972
    800 ℃-1.0 mm 4.689 8.808 7 0.844 61 50 409
    900 ℃-1.0 mm 4.25 7.419 3 0.872 43 42 254
    焊态-1.5 mm 4.227 6.700 5 0.881 55 46 124
    800 ℃-1.5 mm 10.57 4.207 5 0.899 31 80 719
    900 ℃-1.5 mm 9.047 9.291 1 0.870 82 60 404
    下载: 导出CSV 
    | 显示表格
    图  9  堆焊层EIS 拟合采用的等效电路
    Figure  9.  Equivalent circuit used for surfacing layer EIS fitting

    考虑钢基材中Fe元素对镍基堆焊层耐腐蚀性能的影响,取距离镍/钢界面0.5 mm处的堆焊层试样表面进行XPS(X-ray photoelectron spectroscopy,XPS)分析,其焊态和不同固溶处理温度下元素总谱图如图10所示. 由图可知,热处理工艺不改变堆焊层表面钝化膜元素组成,信号峰较强的元素主要是C, O, Cr, Fe, Nb, Mo和 Ni, 说明钝化膜的主要成分是Cr, Nb,和Mo的氧化物,还有少量Fe的氧化物.

    图  10  距镍/钢界面0.5 mm试样表面钝化膜 XPS 总谱图
    Figure  10.  XPS analysis total spectrum of passivation film on the surface of the sample located at 0.5mm away from the Ni/steel interface

    由于焊态和不同固溶处理温度的各元素XPS精细谱相差不大,选择800 ℃固溶处理镍基合金堆焊层的精细图谱进行详细分析. 图11是O1s,Cr2p,Fe2p,Ni2p,Mo3d和Nb3d所对应的精细图谱,由图11(a)可知,O1s精细图谱存在3个不同结合能的峰,分别是表面化学吸附氧OH(531.50 eV)、表面晶格氧O2−(529.78 eV)以及C = O(533.06 eV)[26-27].由此可得,钝化膜主要成分由M·OH和M·O(M代表金属元素)组成;从图11(b)中Nb3d可知,钝化膜中Nb腐蚀产物主要是Nb2 + (202.50 eV)和Nb5 + (206.64 eV);图11(c)表示Cr主要存在3个特征峰,分别是金属态Cr(574.3 eV), Cr6 + (76.4 eV)和Cr3 + (577.3 eV) . 镍基合金熔覆层钝化膜中可能含有Cr,Cr2O3,Cr(OH)3和Cr(OH)3图11(d)表示Fe2p也存在3个特征峰,Fe(706.7 eV),Fe2 + (709.3 eV)和Fe3 + (711.3 eV),这表明Fe2 + 和Fe3 + 是钝化膜中铁氧化物的主要种类,可能为FeO和Fe2O3图11(e)表示在钝化膜表面均检测到金属Mo,Mo4 + 和Mo6 + ,Mo能使钝化膜更加致密牢固,从而有效提高堆焊层镍基合金的耐Cl离子腐蚀性,是有益合金元素;图11(f)表示钝化膜中Ni2P存在一个特征峰,金属态Ni(852.8 eV),Ni是奥氏体形成元素,Ni能起到提高自腐蚀电位,增大钝化区的作用,所以能提高耐点蚀能力,能减缓镍基合金的腐蚀现象[28].

    图  11  镍基合金堆焊层的钝化膜中主要元素XPS图谱
    Figure  11.  XPS spectra of main elements in the passivation film of Ni-based alloy surfacing layer. (a) O1s; (b) Nb3d; (c) Cr2p; (d) Fe2p; (e) Mo3d; (f) Ni2p

    Inconel 625镍基合金表面的主要腐蚀方式是由低Nb和Mo区域与析出相之间引起的电位差而形成的电偶腐蚀[29]. 文中镍基合金堆焊层在NaCl溶液中电化学腐蚀时,Nb和Mo优先溶解, 在钝化膜的外层先形成M·OH,随着腐蚀时间的推移,M·OH脱水分解形成M·O,构成了钝化膜的内层. 另外,优先形成的Nb和Mo部分腐蚀产物进入腐蚀孔隙,阻碍NaCl电解液进一步向镍基合金中渗透,而电解液渗透进入镍基合金内部后,Cr和Fe元素比Ni元素又优先发生电解腐蚀, 底层最终主要是Ni单质. 由此,钝化膜内层主要为Cr,Fe,Nb和Mo的氧化物,外层主要为Cr,Fe,Nb和Mo的氢氧化物. 史鹏和Zhang等人[30-31]验证了上述分析结果.

    (1) 双钨极热丝TIG堆焊技术可以在输油管道高强钢内壁制备成形好、变形小及无明显缺陷的625镍基合金堆焊层,第一层堆焊层晶粒尺寸小于第二层.

    (2) 800 ℃和900 ℃固溶处理使镍/钢复合板中钢侧热影响区组织更加均匀统一. 从焊态到900 ℃固溶处理,镍基合金堆焊层组织中镍基奥氏体枝晶间Laves相和碳化物不断减少,最终有针状δ相产生.

    (3)镍/钢堆焊复合板焊态组织中显微硬度呈现梯度分布特征,具体表现为镍基堆焊层高于钢基体,在焊接热循环的作用下钢材热影响区硬度最低,固溶处理提高了相应区域的硬度. 当固溶处理温度为800 ℃时,组织中有大量次级镍基奥氏体γ″相生成,此相位错密度较高,硬度值最大.

    (4) 堆焊层越靠近基材,腐蚀性能越差. 相比于焊态和900 ℃固溶处理,800 ℃固溶处理时625镍基合金堆焊层耐腐蚀性能最佳. 经XPS分析,堆焊层表面钝化膜由两层构成,内层主要为Cr,Fe,Nb和Mo的氧化物,外层主要为Cr,Fe,Nb和Mo的氢氧化物.

  • 图  1   拱肋连接处局部构造

    Figure  1.   Local structure of arch rib connection

    图  2   环焊缝坡口尺寸及焊道顺序(mm)

    Figure  2.   Groove size and weld bead sequence of girth weld

    图  3   有限元网络模型

    Figure  3.   Finite element network model

    图  4   Q345钢热性能参数和力学参数

    Figure  4.   Thermal and mechanical parameters of Q345 steel. (a) thermal parameters; (b) mechanical parameters

    图  5   均匀体热源模型

    Figure  5.   Homogeneous heat source model. (a) plate welding; (b) pipe welding

    图  6   模型45°截面焊接温度云图(第1 ~ 6层)

    Figure  6.   Cloud chart of welding temperature of model 45° section. (a) first layer; (b) second layer; (c) third layer; (d) fourth layer; (e) fifth layer; (f) sixth layer

    图  7   模型45°截面焊接温度云图(第7层)

    Figure  7.   Cloud chart of welding temperature of model 45° section (seventh layer)

    图  8   特征节点选取空间位置图

    Figure  8.   Spatial location of feature node selection

    图  9   特征节点热循环曲线

    Figure  9.   Thermal cycle curve of characteristic node. (a) first group; (b) second group

    图  10   残余应力分布云图

    Figure  10.   Cloud chart of residual stress distribution. (a) radial residual stress; (b) cyclic residual stress; (c) axial residual stress; (d) equivalent residual stress

    图  11   拱肋钢管内外表面各残余应力曲线

    Figure  11.   Residual stress curve of internal and external surface of arch rib steel pipe. (a) outside surface; (b) internal surface

    图  12   拱肋钢管内表面各残余应力形成过程

    Figure  12.   Formation of radial residual stress on the inner surface of steel pipe. (a) radial residual stress; (b) cyclic residual stress; (c) axial residual stress; (d) equivalent residual stress

    表  1   焊接工艺参数

    Table  1   Welding process parameters

    层数实际电流I/A实际电压U/V焊接速度v/(mm·min−1)
    1 154 ~ 170 19.6 ~ 20.4 189
    2 172 ~ 182 21.8 ~ 22.2 159
    3 186 ~ 200 22.0 ~ 22.4 138
    4 204 ~ 214 22.6 ~ 23.0 110.5
    5 206 ~ 220 22.6 ~ 23.2 91.5
    6 210 ~ 222 24.0 ~ 24.4 94
    7 194 ~ 206 24.2 ~ 24.8 93
    下载: 导出CSV

    表  2   各节点坐标

    Table  2   Position coordinates of each node

    节点位置节点序号节点号X坐标Y坐标Z坐标
    焊缝左侧 1 1 716 0.482 80 0.474 55 0.003 79
    2 5 856 0.488 22 0.479 77 0.006 95
    3 8 556 0.493 64 0.485 10 0.010 10
    4 13 956 0.498 49 0.489 87 0.012 90
    焊缝中心 5 2 792 0.479 98 0.479 98 0
    6 7 472 0.485 36 0.485 36 0
    7 11 432 0.490 73 0.490 73 0
    8 13 053 0.500 36 0.491 70 0
    下载: 导出CSV
  • [1] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50 − 61.

    Chen Baochun, Wei Jiangang, Zhou Jun, et al. Application status and prospect of concrete-filled steel tube arch bridge in china[J]. China Civil Engineering Journal, 2017, 50(6): 50 − 61.

    [2] 赵人达, 张正阳. 我国钢管混凝土劲性骨架拱桥发展综述[J]. 桥梁建设, 2016, 46(6): 45 − 50.

    Zhao Renda, Zhang Zhengyang. Review on the development of concrete filled steel tubular rigid frame arch bridge in China[J]. Bridge Construction, 2016, 46(6): 45 − 50.

    [3] 魏雷, 魏淳. Q460钢T型接头单边开坡口非对称焊接的数值模拟[J]. 热加工工艺, 2019, 48(7): 244 − 246.

    Wei Lei, Wei Chun. Numerical simulation of asymmetric welding of Q460 steel T-joint with unilateral groove[J]. Hot Working Technology, 2019, 48(7): 244 − 246.

    [4] 陈梅峰, 郭玉龙, 周广涛, 等. TC4钛合金薄板激光焊接变形的有限元模拟[J]. 机械工程材料, 2019, 43(7): 74 − 78. doi: 10.11973/jxgccl201907016

    Chen Meifeng, Guo Yulong, Zhou Guangtao, et al. Finite element simulation of laser welding deformation of TC4 titanium alloy sheet[J]. Materials and Testing, 2019, 43(7): 74 − 78. doi: 10.11973/jxgccl201907016

    [5] 方乃文, 王丽萍, 李连胜, 等. 镁合金圆筒舱体DE-GMAW焊接数值模拟[J]. 焊接学报, 2018, 39(7): 29 − 32. doi: 10.12073/j.hjxb.2018390169

    Fang Naiwen, Wang Liping, Li Liansheng, et al. Numerical simulation of DE-GMAW welding of magnesium alloy cylinder cabin[J]. Transactions of the China Welding Institution, 2018, 39(7): 29 − 32. doi: 10.12073/j.hjxb.2018390169

    [6]

    Long H, Gery D, Carlier A, et al. Prediction of welding distortion in butt joint of thin plates[J]. Materials and Design, 2009(30): 4126 − 4135.

    [7]

    Yang Zhibin, Tao Wang, Li Liqun, et al. Numerical simulation of heat transfer and fluid flow during double-sided laser beam welding of T-joints for aluminum aircraft fuselage panels[J]. Optics and Laser Technology, 2017, 91: 120 − 129.

    [8] 任森栋, 毕涛, 李索, 等. P92钢多层多道焊接接头残余应力的有限元模拟[J]. 机械工程材料, 2019, 43(11): 42 − 46. doi: 10.11973/jxgccl201911010

    Ren Sendong, Bi Tao, Li Suo, et al. Finite element simulation of residual stress in P92 steel multi pass welding joint[J]. Materials for Mechanical Engineering, 2019, 43(11): 42 − 46. doi: 10.11973/jxgccl201911010

    [9]

    Ma Ninshu, Cai Zhipeng, Huang Hui, et al. Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment[J]. Materials & Amp Design, 2015, 88: 1296 − 1309.

    [10]

    Mahapatra M M, Datta G L, Pradhan B, et al. Modelling of angular distortion of double-pass butt-welded plate[J]. Journal of Engineering Manufacture, 2007, 222: 391 − 401.

    [11]

    Liu C, Zhang J X, Xue C B. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes[J]. Fusion Engineering & Design, 2011, 86(4−5): 288 − 295.

图(12)  /  表(2)
计量
  • 文章访问数:  547
  • HTML全文浏览量:  21
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-21
  • 网络出版日期:  2020-12-14
  • 刊出日期:  2021-01-06

目录

/

返回文章
返回