高级检索

TC4钛合金水下湿法激光焊接焊缝组织与性能

秦航, 蔡志海, 朱加雷, 王凯, 柳建

秦航, 蔡志海, 朱加雷, 王凯, 柳建. TC4钛合金水下湿法激光焊接焊缝组织与性能[J]. 焊接学报, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
引用本文: 秦航, 蔡志海, 朱加雷, 王凯, 柳建. TC4钛合金水下湿法激光焊接焊缝组织与性能[J]. 焊接学报, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328
Citation: QIN Hang, CAI Zhihai, ZHU Jialei, WANG Kai, LIU Jian. Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 143-148. DOI: 10.12073/j.hjxb.2019400328

TC4钛合金水下湿法激光焊接焊缝组织与性能

Microstructure and properties of TC4 titanium alloy by direct underwater laser beam welding

  • 摘要: 使用光纤激光器对TC4钛合金进行了水下湿法激光焊接试验,通过在TC4表面预置焊接辅助剂实现了增加水下湿法焊接熔深的同时对焊缝进行保护的目的. 对焊缝的微观组织和力学性能进行了分析,结果表明,预置焊接辅助剂后,焊缝熔深增大,焊接阈值增加,焊缝中裂纹减少. 焊缝中心主要由初生α和马氏体组织α'相组成,在熔池底部还保留有粗大的β晶界,焊缝由于水的急冷作用出现了淬硬组织,显微硬度远高于TC4母材. 水下焊接拉伸试验试件均断裂在焊缝处,焊接接头平均抗拉强度值为439 MPa,呈现为脆性断裂.
    Abstract: An optical fiber laser was used to fabricate TC4 titanium alloy welding by direct underwater laser beam welding. The purpose of increasing the penetration depth and protecting the weld were realized by presetting a weld auxiliary to the surface of TC4. The microstructure and mechanical property was analyzed, and the results showed that both the penetration depth and the welding threshold increases, while the cracks reduces. The weld center is mainly composed of primary α and martensitic α' phases, and there is still a large β grain boundary at the bottom of the molten pool. Due to the quench effect of water, the weld underwater has quenched structure, and its microhardness is much higher than that of TC4 base metal. The tensile test specimens of underwater welding are all fractured at the weld joint, and the average tensile strength of the welded joint is 439 MPa, showing brittle fracture.
  • [1] 邵珠晶, 程方杰, 张 帅, 等. 局部干法水下焊接电弧预热技术[J]. 焊接学报, 2018, 39(11):124-128
    Shao Zhujing, Cheng Fangjie, Zhang Shuai, et al. Investigation on arc preheating of local dry underwater welding[J]. Transactions of the China Welding Institution, 2018, 39(11):124-128
    [2] 李洪亮, 刘 多, 于谊飞, 等. 304不锈钢水下湿法焊接工艺[J]. 焊接学报, 2017, 38(9):5-8
    Li Hongliang, Liu Duo, Yu Yifei, et al. Underwater wet welding process of 304 stainless steel[J]. Transactions of the China Welding Institution, 2017, 38(9):5-8
    [3] Wang J F, Sun Q J, Zhang S, et al. Characterization of the underwater welding arc bubble through a visual sensing method[J]. Journal of Materials Processing Techology, 2018, 251:95-108.
    [4] Teng J H, Wang D P, Wang Z J, et al. Repair of arc welded DH36 joint by underwater friction stitch welding[J]. Materials and Design, 2017, 118:266-278.
    [5] Chen Y H, Liu D Y, Xie J L, et al. Development of the active flux in superalloy laser welding and the effect on the weld formation[J]. China Welding, 2017, 26(1):44-48.
    [6] Feng X R, Cui X F, Jin G, et al. Underwater laser cladding in full wet surroundings for fabrication of nickel aluminum bronze coatings[J]. Surface & Coatings Technology, 2018, 333:104-114.
    [7] Zhang X D, Eiji A, Susumu S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding[J]. Journal of Materials Processing Technology, 2006, 174:34-41.
    [8] Guo N, Xing X, Zhao H Y, et al. Effect of water depth on weld quality and welding process in underwater fiber laser welding[J]. Materials and Design, 2017, 115:112-120.
    [9] Zhang Y F, Zhang H, Zhu Z Q, et al. Microstructure, properties and first principles calculation of titanium alloy/steel by Nd:YAG laser self-fluxing welding[J]. China Welding, 2018, 27(3):1-10.
    [10] Xu W F, Zhang Z L. Microstructure and mechanical properties of laser beam welded TC4/TA15 dissimilar joints[J]. Transactions of Nonferrous Metals Society of China, 2016, 26:3135-3146.
    [11] Shen Ni G, Ding H T, Wang Q H, et al. Effect of confinement on surface modification for laser peen forming without protective coating[J]. Surface and Coating Technology, 2016, 289:194-205.
    [12] Zhang X D, Chen W Z, Eiji A, et al. Laser material interaction and process sensing in underwater Nd:yttrium-aluminum-garnet laser welding[J]. Journal of Laser Applications, 2003, 15:279-284.
  • 期刊类型引用(6)

    1. 薛龙,毛雪松,黄继强,张瑞英,王瑃. 水下激光修复研究现状与发展趋势. 焊接学报. 2024(04): 120-128+136 . 本站查看
    2. 尤家玉,胡晨玙,张振海,王晓强,李永清,蔡志海,李竹影. 双相不锈钢水下湿法激光焊接接头组织及其失效行为. 稀有金属材料与工程. 2024(08): 2314-2320 . 百度学术
    3. 巩鹏飞,李亚,柴斐,陈洪胜,高会良,王文先. TC4钛合金真空电子束焊温度场及成形性能. 焊接技术. 2023(08): 35-41+130 . 百度学术
    4. 朱兆剑,韩柯,李洪亮,朱强. Inconel 690局部干法水下激光焊接接头组织及性能研究. 中国激光. 2023(16): 67-78 . 百度学术
    5. 辛锋,文如泉. 卡尔曼级联滤波的激光焊接轨迹跟踪研究与应用. 激光杂志. 2023(11): 204-208 . 百度学术
    6. 周超,李海新,杨振林,姜风春,王琪晨,张文杰. 水下湿法焊接接头质量控制技术研究现状. 焊接. 2021(06): 34-39+60+63 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  381
  • HTML全文浏览量:  6
  • PDF下载量:  37
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-07-02

目录

    /

    返回文章
    返回