高级检索

船用铝/钢焊接接头BC-MIG电弧增材制造工艺

苗玉刚, 李春旺, 尹晨豪, 魏超

苗玉刚, 李春旺, 尹晨豪, 魏超. 船用铝/钢焊接接头BC-MIG电弧增材制造工艺[J]. 焊接学报, 2019, 40(12): 129-132. DOI: 10.12073/j.hjxb.2019400325
引用本文: 苗玉刚, 李春旺, 尹晨豪, 魏超. 船用铝/钢焊接接头BC-MIG电弧增材制造工艺[J]. 焊接学报, 2019, 40(12): 129-132. DOI: 10.12073/j.hjxb.2019400325
MIAO Yugang, LI Chunwang, YIN Chenhao, WEI Chao???????. Study on additive manufacturing of BC-MIG for marine aluminum/steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 129-132. DOI: 10.12073/j.hjxb.2019400325
Citation: MIAO Yugang, LI Chunwang, YIN Chenhao, WEI Chao???????. Study on additive manufacturing of BC-MIG for marine aluminum/steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 129-132. DOI: 10.12073/j.hjxb.2019400325

船用铝/钢焊接接头BC-MIG电弧增材制造工艺

Study on additive manufacturing of BC-MIG for marine aluminum/steel welded joints

  • 摘要: 选用直径1.2 mm的4043铝焊丝为增材材料,2 mm厚的Q235镀锌钢板为基板,研究BC-MIG电弧增材制造工艺. 将得到的铝/钢焊接接头与6061铝合金板材进行焊接,得到的T形材结构成形美观. 利用光学显微镜和显微硬度仪分别对接头的组织形貌和硬度分布进行分析. 结果表明,由于温度梯度和冷却速率的差异,界面层处铝侧为竖直向上生长的树枝晶状组织,中部呈现结晶方向相对杂乱的晶枝结构,顶端组织晶粒较为细小且生长无方向性. 沿着钢母材区域至界面中间层,再至铝合金区域,接头硬度先增加后减小至趋于平缓,在铝/钢界面结合层区域硬度达到最大142 HV.
    Abstract: The 4043 aluminum wire with a diameter of 1.2 mm was employed as additive material deposition on the 2 mm thick Q235 low carbon steel plates to study BC-MIG arc additive manufacturing process. The T-shaped structure obtained by welding aluminum/steel welded joints with 6061 aluminum alloy plate was beautiful in appearance. The microstructure and hardness distribution of the joint were analyzed by optical microscope and microhardness tester respectively. The results showed that due to the difference of temperature gradient and cooling rate, the aluminum side of the interface layer is a dendritic structure that grew vertically upwards, the middle part showed a relatively cluttered crystal structure, and the top grain is finer and has no directional growth. Along the steel base material area to the intermediate layer of the interface, and then to the aluminum alloy area, the hardness of the joint first increases and then decreases to a gentle degree, and the hardness of the joint layer in the aluminum/steel interface reaches a maximum of 142 HV.
  • [1] 宋 军, 张文平, 华先锋. 船用铝钢复合材制备工艺研究[J]. 兵器装备工程学报, 2016, 37(3):129-131
    Song Jun, Zhang Wenping, Hua Xianfeng. Manufacturing process of aluminium steel clad plate for warship[J]. Journal of Ordnance Equipment Engineering, 2016, 37(3):129-131
    [2] 王建民, 朱 锡, 刘润泉. 铝/钢爆炸复合界面的显微分析[J]. 材料工程, 2006(11):36-39, 44
    Wang Jianmin, Zhu Xi, Liu Runquan. Micro analysis of bonding interfaces of explosive welded aluminum/steel plates[J]. Journal of Materials Engineering, 2006(11):36-39, 44
    [3] 李 妍, 刘 宁, 黄健康, 等. 提高铝钢焊接接头力学性能的研究现状[J]. 电焊机, 2017, 47(2):102-106
    Li Yan, Liu Ning, Huang Jiankang, et al. Research status of improving the aluminum steel welded joint mechanical properties[J]. Electric Welding Machine, 2017, 47(2):102-106
    [4] 王绪明. 钢-铝结构过渡接头的性能特点及焊接工艺[J]. 船海工程, 2008, 37(3):20-22.
    Wang Xuming. Property and welding procedure of the Steel-aluminum structural transition joint[J].Ship & Ocean Engineering, 2008, 37(3):20-22.
    [5] Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7):641-647.
    [6] Kecsmar J, Shenoi R A. Some notes on the influence of manufacturing on the fatigue life of welded aluminum marine structures[J]. Journal of Ship Production, 2004, 20(3):164-175.
    [7] Cong B Q, Qi Z W, Qi B J, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences-Basel, 2017, 7(3):275-285.
    [8] Wang Y J, Wei B, Guo Y Y, et al. Microstructure and mechanical properties of the joint of 6061 aluminum alloy by plasma-MIG hybrid welding[J]. China Welding, 2017, 26(2):58-64.
    [9] Gungor B, Kaluc E, Taban E, et al. Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys[J]. Materials & Design, 2014, 54(2):207-211.
    [10] 苗玉刚, 吴斌涛, 韩端锋, 等. 铝/镀锌钢异种金属旁路分流MIG 电弧熔钎焊界面区组织与接头性能[J]. 焊接学报, 2014, 35(9):6-10
    Miao Yugang, Wu Bintao, Han Duanfeng, et al. Characteristics of joint and interface layer during bypass-current MIG welding-brazing of aluminum and steel dissimilar metals[J]. Transactions of the China Welding Institution, 2014, 35(9):6-10
    [11] Miao Y G, Xu X F, Wu B T, et al. Effects of bypass current on the stability of weld pool during double sided arc welding[J]. Journal of Materials Processing Technology, 2014, 214(8):1590-1596.
    [12] Ding D H, Pan Z X, Cuiuri D, et al. Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2016, 39:32-42.
  • 期刊类型引用(9)

    1. 贾剑平,李田雨,詹志平,姜喜铭. Cu对铝/钢CMT熔钎焊接头界面区组织的影响研究. 热加工工艺. 2024(03): 57-61 . 百度学术
    2. 张旭东,方晓明. 白车身激光钎焊检查与返修方法. 汽车工艺与材料. 2021(02): 20-25 . 百度学术
    3. 高恺,刘桂奇,李坤,朱刘博,顾红历. Q235钢与5052铝合金感应-静压焊接头界面微观组织和力学性能. 焊接学报. 2021(11): 35-42+99 . 本站查看
    4. 吴永亮,顾丽霞,罗立峰. Al-Cu合金片对钢/铝异种金属激光-MIG复合焊接头组织和性能的影响. 机械工程材料. 2020(03): 1-7+12 . 百度学术
    5. 李军兆,刘一搏,孙清洁,陶玉洁,张清华,靳鹏,冯吉才. 激光摆动模式对铝/钢焊接接头成形特征及组织、强度的影响. 中国激光. 2020(04): 141-148 . 百度学术
    6. 贾剑平,詹志平. 铝钢熔钎焊工艺及腐蚀性能研究进展. 热加工工艺. 2020(11): 1-5 . 百度学术
    7. 郭柏征,闫德俊,董红刚. 5083铝合金/E36钢熔钎焊接头组织及力学性能. 焊接. 2020(03): 29-34+66 . 百度学术
    8. 李伦坤,高晓龙,刘晶,王小强,刘欢,余浩魁. 铝/钢异种金属熔钎焊技术发展现状. 宝鸡文理学院学报(自然科学版). 2019(03): 49-54 . 百度学术
    9. 张洋,郭玉奇,曹雅彬,齐海波. 铝/钢金属超声波辅助激光熔钎焊组织及性能. 焊接. 2019(09): 14-19+66 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  373
  • HTML全文浏览量:  4
  • PDF下载量:  41
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-07-14

目录

    /

    返回文章
    返回