高级检索

不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为

韩文涛, 林健, 雷永平, 葛进国

韩文涛, 林健, 雷永平, 葛进国. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47-52. DOI: 10.12073/j.hjxb.2019400311
引用本文: 韩文涛, 林健, 雷永平, 葛进国. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47-52. DOI: 10.12073/j.hjxb.2019400311
HAN Wentao, LIN Jian, LEI Yongping, GE Jinguo. Thermal-stress analysis of wire-arc additive manufacturing 2Cr13 parts with different interlayer idle time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 47-52. DOI: 10.12073/j.hjxb.2019400311
Citation: HAN Wentao, LIN Jian, LEI Yongping, GE Jinguo. Thermal-stress analysis of wire-arc additive manufacturing 2Cr13 parts with different interlayer idle time[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 47-52. DOI: 10.12073/j.hjxb.2019400311

不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为

基金项目: 国家重点研发计划(2017YFB1104803);国家自然科学基金(51275006)

Thermal-stress analysis of wire-arc additive manufacturing 2Cr13 parts with different interlayer idle time

  • 摘要: 在电弧增材制造过程中,沉积件内部的热-力演变对成形件质量具有重要影响. 文中通过电弧增材制造三维有限元模型的建立,对层间停留时间分别为30,120,210,300 s的2Cr13沉积件温度场和应力场进行了模拟,模拟结果与测量结果基本一致. 结果表明,层间停留时间为30 s时构件的纵向残余应力分布显著差异于其它构件. 层间停留时间大于210 s时,再延长层间停留时间起不到明显降低应力的效果.电弧增材制造单道25层2Cr13薄壁件的层间停留时间在120~210 s之间较为合适.
    Abstract: During the wire-arc additive manufacturing, the thermal and stress evolution inside the as-deposited parts has an important influence on the quality of the parts. Temperature and stress characteristics of 2Cr13 thin-wall parts, with interlayer idle time of 30, 120, 210 and 300 s was simulated using the three-dimensional finite element model. The simulation results have a good agreement with the corresponding experimental results. The results indicated that longitudinal residual stress distribution of the buildup with 30 s interlayer idle time are significantly different from those of deposits with other interlayer idle time. When the interlayer idle time is longer than 210 s, the further increase of the interlayer idle time can hardly reduce the stress. Consequently the interlayer idle time of the wire-arc additive manufacture 25-layer thin-walled 2Cr13 parts is suitable between 120~210 s.
  • [1] 李 雷, 于治水, 张培磊, 等. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12):37-43
    Li Lei, Yu Zhishui, Zhang Peilei, et al. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. Transactions of the China Welding Institution, 2018, 39(12):37-43
    [2] 熊江涛, 耿海滨, 林 鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 24(23):80-85
    Xiong Jiangtao, Geng Haibin, Lin Xin, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015, 24(23):80-85
    [3] Li C, Liu Z Y, Fang X Y, et al. Residual stress in metal additive manufacturing[J]. Procedia CIRP, 2018, 71(6):35-37.
    [4] Fang J X, Dong S Y, Wang Y J. Residual stress modeling of thin wall by laser cladding forming[J]. China Welding, 2017, 26(3):34-38.
    [5] Mukherjee T, Zhang W, Debroy T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126:360-372.
    [6] Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing-part Ⅱ:powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys[J]. Computational Materials Science, 2018, 150:369-380.
    [7] Mukherjee T, Wei H L, De A, et al. Heat and fluid flow in additive manufacturing-part I:modeling of powder bed fusion[J]. Computational Materials Science, 2018, 150:304-313.
    [8] Zhao H. Effects of interpass idle time on thermal stresses in multipass multilayer weld-based rapid prototyping[J]. Journal of Manufacturing Science and Engineering, 2013, 135:1-6.
    [9] Zhao H, Zhang G, Yin Z, et al. A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2011, 211(3):488-495.
    [10] Zhao H, Zhang G, Yin Z, et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping[J]. Journal of Materials Processing Technology, 2012, 212(1):276-285.
    [11] Lei Y, Xiong J, Li R, et al. Effect of inter layer idle time on thermal behavior for multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018(96):1355-1365.
    [12] 杨罗扬. 基于CMT的不锈钢电弧增材制造温度场、应力场及成型工艺研究[D]. 南京:南京理工大学, 2017.
    [13] 曹熙勇. 铝合金CMT电弧增材制造温度场、应力场及流场数值模拟[D]. 南京:南京航空航天大学, 2018.
    [14] Ge J, Lin J, Fu H, et al. A spatial periodicity of microstructural evolution and anti-indentation properties of wire-arc additive manufacturing 2Cr13 thin-wall part[J]. Materials & Design, 2018, 160:218-228.
    [15] 朱瑞栋, 董文超, 林化强, 等. CRH2A型动车组缓冲梁结构焊接残余应力的有限元模拟[J]. 金属学报, 2014, 50(8):944-954
    Zhu Ruidong, Dong Wenchao, Lin Huaqiang, et al. Finite element simulation of welding residual stress for buffer beam of CRH2A high speed train[J]. Acta Metallurgica Sinica, 2014, 50(8):944-954
    [16] 李金阁. Q345/2Cr13钢异种材料焊接过程有限元分析[D]. 重庆:重庆大学, 2012.
  • 期刊类型引用(8)

    1. 周桂娟,童志,陈晓华,郑文跃,熊道英,王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展. 材料导报. 2022(02): 168-176 . 百度学术
    2. 朱敏,张延松. X80埋弧焊热影响区的微观组织与局部软化行为分析. 焊接学报. 2021(04): 69-73+96+100 . 本站查看
    3. 张岩. 高强钢在轻量化结构设计中的应用及其焊接. 电焊机. 2021(12): 34-40+128 . 百度学术
    4. 李赫,王磊,黄勇,周明,周琦,王克鸿. 预热温度对AH36激光焊缝组织及硬度的影响. 焊接. 2021(10): 25-28+62 . 百度学术
    5. 卓晓,李立新,李弟,刘译洋,孔海君,赵丹. EH36-Z35钢在低温环境中的焊接冷裂纹敏感性. 机械工程材料. 2020(08): 47-51 . 百度学术
    6. 卢尚文,董常福,龚艳丽,何忆斌,张凯. 960 MPa级高强钢焊接热影响区连续冷却曲线的测定及焊接工艺评定. 焊接. 2019(07): 50-56+68 . 百度学术
    7. 马俊,朱敏,袁永锋,郭绍义,尹思敏,张强. 交流干扰下不同组织X100钢在格尔木土壤模拟溶液中的腐蚀行为. 表面技术. 2019(08): 272-279 . 百度学术
    8. 严春妍,元媛,张可召,吴立超,王宝森. X100管线钢焊接冷裂纹敏感性. 焊接学报. 2019(12): 41-46+162-163 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  295
  • HTML全文浏览量:  7
  • PDF下载量:  56
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-04-16

目录

    /

    返回文章
    返回