高级检索

CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响

勾健, 王志江, 胡绳荪, 田银宝

勾健, 王志江, 胡绳荪, 田银宝. CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019, 40(12): 31-35,46. DOI: 10.12073/j.hjxb.2019400308
引用本文: 勾健, 王志江, 胡绳荪, 田银宝. CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019, 40(12): 31-35,46. DOI: 10.12073/j.hjxb.2019400308
GOU Jian, WANG Zhijiang, HU Shengsun, TIAN Yinbao. Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 31-35,46. DOI: 10.12073/j.hjxb.2019400308
Citation: GOU Jian, WANG Zhijiang, HU Shengsun, TIAN Yinbao. Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 31-35,46. DOI: 10.12073/j.hjxb.2019400308

CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响

基金项目: 国家自然科学基金资助项目(51575381);天津市应用基础及前沿技术研究计划资助项目(15JCZDJC38600)

Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing

  • 摘要: 采用CMT+P程序进行TC4钛合金焊丝电弧增材制造,针对增材过程中热积累造成的组织性能不均匀性,采用两种不同热处理工艺以期改善这种不均匀性,并提高增材构件性能. 结果表明,采用CMT+P进行增材制造可以获得成形良好的沉积零件,当送丝速度为6 m/min,焊枪行走速度为0.3 m/min时,其热输入为313 J/mm, 沉积零件显微组织从上至下不断粗大. 热处理后试样不同部位晶粒大小变得均匀,抵抗塑性变形的能力增强. 拉伸试验表明,在600℃,4 h热处理条件下,构件的抗拉强度最高,为1 124 MPa. 断口分析表明, 所有试样断裂方式均为韧性断裂.
    Abstract: CMT + P procedure was used in wire and arc additive manufacturing of TC4 titanium alloy. Aiming at inhomogeneity in microstructure and properties by heat accumulation in addictive manufacturing process, two heat treatment processes were used to improve the inhomogeneity and promote the performance of component by addictive manufacturing. The results showed that the as-built wall in a good appearance can be obtained with CMT+P procedure. When the wire feeding speed is 6 m/min and the welding torch speed is 0.3 m/min, the heat input is 313 J/mm, and the microstructure of as-built wall is continuously growing from bottom to top. The grain size for different positions of sample becomes uniform and the resistance to plastic deformation for the sample is enhanced after heat treatment. Tensile testing shows that the component has the highest tensile strength of 1 124 MPa under 600℃ and 4 h condition. The fracture analysis shows that all the fracture modes are ductile fracture.
  • [1] Tian D Y, Yan T Y, Gao Q Y, et al. Thermal cycle and its influence on the microstructure of laser welded butt joint of 8 mm thick Ti-6Al-4V alloy[J]. China welding, 2019, 28(3):60-66.
    [2] David F, Huck B C, John L. Characterizing the tensile behavior of additively manufactured Ti-6Al-4V using multiscale digital image correlation[J]. Materials Science & Engineering A, 2018, 724:536-546.
    [3] 张 栋, 陈茂爱, 武传松. 高速CMT焊送丝速度和焊接电流波形参数的优化[J]. 焊接学报, 2018, 39(1):119-122
    Zhang Dong, Chen Maoai, Wu Chuansong. Optimization of waveform parameters for high speed CMT welding of steel[J]. Transactions of the China Welding Institution, 2018, 39(1):119-122
    [4] 孙军浩, 曹 睿, 陈剑虹. 铝/钛异种金属冷金属过渡熔钎焊接头分析[J]. 焊接学报, 2015, 36(3):51-54
    Sun Junhao, Cao Rui, Chen Jianhong. Analysis of welding-brazing joints of Ti/Al dissimilar metals obtained by cold metal transfer method[J]. Transactions of the China Welding Institution, 2015, 36(3):51-54
    [5] Bermingham M J, Nicastro L, Kent D, et al. Optimising the mechanical properties of Ti-6Al-4V components produced by wire+arc additive manufacturing with post-process heat treatments[J]. Journal of Alloys and Compounds, 2018, 753:247-255.
    [6] Pang J, Hu S S, Shen J Q, et al. Arc characteristics and metal transfer behavior of CMT+P welding process[J]. Journal of Materials Processing Technology, 2016, 238:212-217.
    [7] Sun Z, Lü Y, Xu B, et al. Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti-6Al-4V alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12):2007-2014.
    [8] Gou J, Shen J Q, Hu S S, et al. Microstructure and mechanical properties of as-built and heat-treated Ti-6Al-4V alloy prepared by cold metal transfer additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 42:41-50.
    [9] Ahmed T, Rack H J. Phase transformations during cooling in α + β, titanium alloys[J]. Materials Science & Engineering A, 1998, 243(1-2):206-211.
    [10] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85:74-84.
    [11] Zhang M K, Yang Y Q, Wang D, et al. Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting[J]. Materials Science & Engineering A, 2018, 736:288-297.
    [12] 张飞奇, 陈文革, 田美娇. Ti-6Al-4V丝材电弧增材制造钛合金的组织与性能[J]. 稀有金属材料与工程, 2018, 47(6):1891-1894
    Zhang Feiqi, Chen Wenge, Tian Meijiao. Microstructure and properties of Ti-6Al-4V alloy by wire+arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2018, 47(6):1891-1894
    [13] 卞 红, 田 骁, 冯吉才, 等. TC4/Ti60合金钎焊接头界面组织及力学性能[J]. 焊接学报, 2018, 39(5):33-36
    Bian Hong, Tian Xiao, Feng Jicai, et al. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transactions of the China Welding Institution, 2018, 39(5):33-36
  • 期刊类型引用(7)

    1. 陈文仕,何日恒,金礼,姚屏. 电流波形对2209双相不锈钢双丝增材制造的影响. 机电工程技术. 2025(04): 46-49+111 . 百度学术
    2. 夏玉峰,滕海灏,张雪,郑德宇,权国政. Ti-6Al-4V合金电弧熔丝增材的组织性能研究进展. 重庆大学学报. 2022(04): 87-99 . 百度学术
    3. 刘玉项,王启伟,朱胜. 励磁电流对6061铝合金MIG焊熔敷层组织及性能的影响. 焊接技术. 2021(05): 12-16+179 . 百度学术
    4. 张大越,刘旭明,张建,李彬周,赵阳,王军生. TC4-DT激光熔丝增材制造微观组织与力学性能研究. 钢铁钒钛. 2021(06): 97-101 . 百度学术
    5. 李广德,王瑛,李伟伦. 热处理制度对汽车用TC6钛合金组织及性能的影响. 钢铁钒钛. 2021(06): 147-152 . 百度学术
    6. 徐国建,柳晋,陈冬卅,马瑞鑫,苏允海. 正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响. 焊接学报. 2020(01): 39-43+99 . 本站查看
    7. 杨东青,王小伟,黄勇,李晓鹏,王克鸿. 熔化极电弧增材制造18Ni马氏体钢组织和性能. 焊接学报. 2020(08): 6-9+21+97 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  423
  • HTML全文浏览量:  21
  • PDF下载量:  81
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-04-07

目录

    /

    返回文章
    返回