高级检索

C18150合金搅拌摩擦焊焊缝微观组织与力学性能分析

贺地求, 薛飞, 孙友庆

贺地求, 薛飞, 孙友庆. C18150合金搅拌摩擦焊焊缝微观组织与力学性能分析[J]. 焊接学报, 2019, 40(11): 93-99. DOI: 10.12073/j.hjxb.2019400294
引用本文: 贺地求, 薛飞, 孙友庆. C18150合金搅拌摩擦焊焊缝微观组织与力学性能分析[J]. 焊接学报, 2019, 40(11): 93-99. DOI: 10.12073/j.hjxb.2019400294
HE Diqiu, XUE Fei, SUN Youqing. Microstructure and mechanical characterization of a friction-stir-welded C18150 butt joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 93-99. DOI: 10.12073/j.hjxb.2019400294
Citation: HE Diqiu, XUE Fei, SUN Youqing. Microstructure and mechanical characterization of a friction-stir-welded C18150 butt joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 93-99. DOI: 10.12073/j.hjxb.2019400294

C18150合金搅拌摩擦焊焊缝微观组织与力学性能分析

基金项目: 国家重点基础研究发展规划(973计划)项目(2014CB046605);中南大学研究生自主探索创新项目(2018zzts484)

Microstructure and mechanical characterization of a friction-stir-welded C18150 butt joint

  • 摘要: 采用搅拌摩擦焊的方法对铬锆铜合金(Cu-Cr-Zr合金)进行了焊接,采用金相显微镜、场发射扫描电镜、背散射电子衍射仪对焊缝的微观组织性能进行了研究,采用拉伸试验和硬度试验对焊缝的力学性能进行了分析.结果表明,铬锆铜焊核区的最终晶粒状态表现为动态再结晶晶粒和部分动态回复晶粒的组合,其动态再结晶机制为连续动态再结晶机制.铬锆铜焊核区可以发现直径约为5~10 μm的粗大颗粒,通过EDS分析发现其成分主要为Cr元素.焊核区的纳米沉淀强化相由于较高的焊接温度和热循环全部回溶到铜基体中,纳米沉淀强化相的回溶导致焊缝的抗拉强度和硬度都比母材区有所降低.
    Abstract: In this study, the Cu-Cr-Zr alloy was welded by means of friction stir welding. Particularly, the microstructure of joints was observed by Metalloscope, SEM and Electron backscatter diffraction (EBSD). The mechanical properties were investigated by tension test and micro-hardness test. The result shows that the final grain structure in the nugget zone is composed of grains in state of dynamic recrystallization and partial dynamic recovery. The dynamic recrystallization process is a continuous dynamic recrystallization process. Coarse particles which are 5~10 μm in length are found innugget zone of Cu-Cr-Zr. The EDS analysis further reveals that these coarse particles are mainly composed of Cr element. All these precipitates are dissolved due to the high temperature in the nugget zone of Cu-Cr-Zr. The micro-hardness and tensile strength of nugget zone decreased due to the dissolution of precipitates.
  • [1] 李颖. AZ31B和7075搅拌摩擦焊接头组织与力学性能研究[D]. 长沙:湖南大学, 2015.
    [2] Mishnev R, Shakhova I, Belyakov A, et al. Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering:A, 2015, 629:29-40.
    [3] Shen J J, Liu H J, Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper[J]. Materials & Design, 2010, 31:3937-3942.
    [4] Zhang L J, Bai Q L, Ning J, et al. A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding[J]. Materials & Design, 2016, 110:35-50.
    [5] Kanigalpula P K C, Pratihar D K, Jha M N, et al. Experimental investigations, input-output modeling and optimization for electron beam welding of Cu-Cr-Zr alloy plates[J]. The International Journal of Advanced Manufacturing Technology, 2015, 85:711-726.
    [6] 乔柯, 王文, 吴楠, 等. 铝铜复合板搅拌摩擦焊接接头组织性能研究[J]. 材料导报, 2016, 30(12):86-89 Qiao Ke, Wang Wen, Wu Nan, et al. Research on microstructure and property of friction stir welding joint of Al/Cu clad plates[J]. Materials Review, 2016, 30(12):86-89
    [7] 毛亚芬. 铜及铜合金(H62)搅拌摩擦焊接头组织与性能研究[D].长春:长春工业大学, 2014.
    [8] Azizi A, Barenji R V, Barenji A V, et al. Microstructure and mechanical properties of friction stir welded thick pure copper plates[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86:1985-1995.
    [9] Sahlot P, Jha K, Dey G K, et al. Quantitative wear analysis of H13 steel tool during friction stir welding of Cu-0.8%Cr-0.1%Zr alloy[J]. Wear, 2017, 378-379:82-89.
    [10] Jha K, Kumar S, Nachiket K, et al. Friction stir welding (FSW) of aged CuCrZr alloy plates[J]. Metallurgical and Materials Transactions A, 2017, 49:223-34.
    [11] Lai R, He D, He G, et al. Study of the microstructure evolution and properties response of a friction-stir-welded copper-chromium-zirconium alloy[J]. Metals, 2017, 7:381.
    [12] Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic material[J]. Materials & Design, 2016, 111:548-574.
    [13] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018(2):265-277 Wu Chuansong, Su Hao, Shi Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metaiiurgica Sinica, 2018(2):265-277
    [14] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 alumirwn[J]. Acta Materalia, 2003, 51:713-729.
    [15] Holzwarth U, Stamm H. The precipitation behavior of ITER-qrad Cu-Cr-Zr alloy after simulation the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials, 2000, 279:31-45.
  • 期刊类型引用(4)

    1. 金玉花,周子正,邢逸初,吴博. 滚动轧制对7050铝合金FSW接头组织的影响. 兰州理工大学学报. 2023(04): 30-34 . 百度学术
    2. 贺地求,刘朋,王海军,王东曜,赖瑞林. 2219-T6静轴肩辅助搅拌摩擦焊组织与性能分析. 湖南大学学报(自然科学版). 2021(08): 11-18 . 百度学术
    3. 徐韬,周灿丰. 一种液压摩擦焊机电液系统研究与试验. 液压气动与密封. 2020(03): 32-35 . 百度学术
    4. 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响. 材料导报. 2020(S2): 1351-1355 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  364
  • HTML全文浏览量:  1
  • PDF下载量:  57
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-05-09

目录

    /

    返回文章
    返回