高级检索

电弧能量匹配对前后列置双TIG高速焊接焊缝组织与性能的影响

秦国梁, 冯超, 江海红, 姜自立, 耿培皓

秦国梁, 冯超, 江海红, 姜自立, 耿培皓. 电弧能量匹配对前后列置双TIG高速焊接焊缝组织与性能的影响[J]. 焊接学报, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285
引用本文: 秦国梁, 冯超, 江海红, 姜自立, 耿培皓. 电弧能量匹配对前后列置双TIG高速焊接焊缝组织与性能的影响[J]. 焊接学报, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285
QIN Guoliang, FENG Chao, JIANG Haihong, JIANG Zili, GENG Peihao. Microstructure and properties of weld by high-speed tandem TIG welding of different arc power matching[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285
Citation: QIN Guoliang, FENG Chao, JIANG Haihong, JIANG Zili, GENG Peihao. Microstructure and properties of weld by high-speed tandem TIG welding of different arc power matching[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 39-44. DOI: 10.12073/j.hjxb.2019400285

电弧能量匹配对前后列置双TIG高速焊接焊缝组织与性能的影响

基金项目: 国家自然科学基金资助项目(51575317);山东省重点研发计划项目(2018GGX103033)

Microstructure and properties of weld by high-speed tandem TIG welding of different arc power matching

  • 摘要: 对厚度为1.2 mm的304奥氏体不锈钢板进行前后列置双TIG电弧高速焊接工艺试验,通过对焊缝宏观形貌、组织和拉伸性能进行分析,评定前置电弧能量和后置电弧能量大小匹配对焊缝组织与性能的影响.结果表明,前置电弧能量较高的焊缝中心晶粒平均直径相比母材降低约33.9%,相比后置电弧能量较高的焊缝中心晶粒平均直径降低约26.1%,热影响区晶粒平均直径降低约18.1%.前置电弧能量较高焊缝相比后置电弧能量较高的焊接标准试样抗拉强度提高约7.9%,断后伸长率提高约33.3%,说明前置电弧能量较高有助于获得较高性能的焊缝.
    Abstract: The experimental materials were 304 austenite stainless steel plates, with 1.2 mm in thickness. According to the analysis of the weld appearance, and the microstructures and properties of the weld joint, the quality of the weld beads at different parameters was obtained. The experimental results show that the average grain size at higher leading arc power of weld center is about 33.9% lower than that of the base metal. Meanwhile, the average grain size of HAZ is reduced by about 18.1% compared with higher rear arc power. The tensile strength of the weld is higher than that of the standard specimens with higher rear arc power, by 7.9%, and the elongation is higher than that of higher rear arc power, by 33.3%. It indicates that the weld at higher leading arc power behaves better properties.
  • [1] 常云龙, 杨殿臣, 魏来, 等. 外加横向磁场对高速TIG焊缝成形的影响[J]. 焊接学报, 2011, 32(3):49-52 Chang Yunlong, Yang Dianchen, Wei Lai, et al. Influence of magnetic controlled technology on formation of high-speed TIG welding[J]. Transactions of the China Welding Institution, 2011, 32(3):49-52
    [2] 周拨云, 路林, 贺优优, 等. 磁场在薄壁不锈钢管高速TIG焊中的应用[J]. 焊管, 2011, 34(1):54-56 Zhou Boyun, Lu Lin, He Youyou, et al. Application of magnetic field on high speed TIG welding for thin-wall stainless steel pipe[J]. Welded Pipe and Tube, 2011, 34(1):54-56
    [3] 樊丁, 林涛, 黄勇, 等. 电弧辅助活性TIG焊接法[J]. 焊接学报, 2008, 29(12):1-4 Fan Ding, Lin Tao, Huang Yong, et al. Arc assisted activating TIG welding process[J]. Transactions of the China Welding Institution, 2008, 29(12):1-4
    [4] Wang X, Fan D, Huang J, et al. Numerical simulation of arc plasma and weld pool in double electrodes tungsten inert gas welding[J]. International Journal of Heat and Mass Transfer, 2015, 85:924-934.
    [5] Ogino Y, Hirata Y, Kawata J, et al. Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc[J]. Welding in the World, 2013, 57(3):411-423.
    [6] 秦国梁. 一种薄壁钢管高速焊接生产工艺及装置:中国, 2011100553468[P]. 2011-08-17.
    [7] 秦国梁, 孟祥萌, 付邦龙, 等. 薄壁不锈钢管列置双TIG电弧高速焊接工艺[J]. 机械工程学报, 2015, 51(12):83-88 Qin Guoliang, Meng Xiangmeng, Fu Banglong, et al. High speed tandem TIG welding of thin-walled stainless steel pipe[J]. Journal of Mechanical Engineering, 2015, 51(12):83-88
    [8] Ghosh P K, Dorn L, Kulkarni S, et al. Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of stainless steel[J]. Journal of Materials Processing Technology, 2009, 209(3):1262-1274.
    [9] 于凤琴. 直缝焊管成型过程张力分析[J]. 焊管, 2002, 25(3):18-20 Yu Fengqin. Tensile analysis of straight seam welded pipe forming process[J]. Welded Pipe and Tube, 2002, 25(3):18-20
    [10] Xuesong L, Guangjun Z, Hongming G, et al. A study on twin-tungsten TIG welding method[J]. China Welding, 2006, 15(1):49-52.
    [11] El-Batahgy A M. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels[J]. Materials Letters, 1997, 32(2-3):155-163.
    [12] Reynolds A P, Tang W, Gnaupel-Herold T, et al. Structure, properties, and residual stress of 304L stainless steel friction stir welds[J]. Scripta Materialia, 2003, 48(9):1289-1294.
    [13] Yan J, Gao M, Zeng X. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding[J]. Optics and Lasers in Engineering, 2010, 48(4):512-517.
    [14] Kumar S, Shahi A S. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints[J]. Materials & Design, 2011, 32(6):3617-3623.
    [15] Lippold. 不锈钢焊接冶金学及焊接性[M]. 陈剑虹, 译. 北京:化学工业出版社, 2008.
    [16] Saha S, Mukherjee M, Pal T K. Microstructure, texture and mechanical property analysis of gas metal arc welded AISI 304 austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24(3):1125-1139.
    [17] 刘智恩. 材料科学基础[M]. 西安:西北工业大学出版社, 2013.
  • 期刊类型引用(3)

    1. 田晓羽,张志伟,周晨,赵连清,田洋光,付伟,宋晓国. 钎焊温度对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢组织和性能的影响. 焊接学报. 2024(06): 61-67 . 本站查看
    2. 李姗珊,李晓延,张伟栋,杨刚力,张虎. 不同取向Cu/Cu_3Sn界面处原子扩散行为的分子动力学模拟. 电子元件与材料. 2023(04): 467-475 . 百度学术
    3. 任二花,李晓延,张虎,韩旭. 空位对Cu/Sn焊点中Cu_3Sn层元素扩散的影响. 电子元件与材料. 2022(04): 381-386 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  342
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-01-29

目录

    /

    返回文章
    返回