高级检索

多臂协同焊接机器人运动学逆解及误差分析

曾氢菲, 刘雪梅, 邱呈溶

曾氢菲, 刘雪梅, 邱呈溶. 多臂协同焊接机器人运动学逆解及误差分析[J]. 焊接学报, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282
引用本文: 曾氢菲, 刘雪梅, 邱呈溶. 多臂协同焊接机器人运动学逆解及误差分析[J]. 焊接学报, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282
ZENG Qingfei, LIU Xuemei, QIU Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282
Citation: ZENG Qingfei, LIU Xuemei, QIU Chengrong. Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 21-27. DOI: 10.12073/j.hjxb.2019400282

多臂协同焊接机器人运动学逆解及误差分析

基金项目: 国家重点研发计划(2017YFB1301600)

Inverse kinematics and error analysis of cooperative welding robot with multiple manipulators

  • 摘要: 为了实现飞机双曲度壁板与桁条之间T形接头双侧焊缝的精准焊接,提出基于神经网络的多臂协同焊接机器人逆运动学求解方法.在构建多臂协同焊接机器人DH模型并进行有效性验证的基础上,考虑焊接机器人各关节运动范围,获取样本数据.基于BP和RBF神经网络,将18个关节子空间映射到三条机械臂末端作业空间,把高维、非线性逆运动学求解问题转换为多输入多输出预测模型.对两种神经网络模型求解效果进行对比.结果表明,基于神经网络的多臂焊接机器人运动学逆解求解结果精度高,其中BP神经网络求解速度更快,而RBF神经网络的预测效果更好.
    Abstract: In order to realize the precise welding of T-joint between aircraft hyperbolic panel and the stringers, a method of solving inverse kinematics equations for cooperative welding robot with multiple manipulators based on neural network was presented. On the basis of building an effective DH model of cooperative welding robot with multiple manipulators, sample data was obtained considering the movement ranges of the robot joints. Based on BP and RBF neural networks, 18 joint subspaces are mapped to the workspaces of three manipulators. The high-dimensional and non-linear inverse kinematics problem was transformed into multi-input and multi-output prediction model. The results show that prediction model of solving cooperative welding robot kinematics equations has high accuracy, among which the BP prediction model is faster and the RBF prediction model is better.
  • [1] Wang P J, Wang X, Lin L, et al. The method and experimental research on seam tracking and dual-beam laser welding for T-type welding seam[J]. Applied Mechanics and Materials, 2014(687-691):309-315.
    [2] 梁斌焱, 许先雨, 龚时华, 等. 三维T形焊缝的双光束激光焊接及其焊缝跟踪控制[J]. 焊接学报, 2016, 37(2):47-50 Liang Binyan, Xu Xianyu, Gong Shihua, et al. Dual-beam laser welding and seam tracking control technology for 3D T-beam[J]. Transaction of the China Welding Institution, 2016, 37(2):47-50
    [3] Han B, Tao W, Chen Y, et al. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels:effects of filler elements on microstructure and mechanical properties[J]. Optics & Laser Technology, 2017, 93:99-108.
    [4] Huang Y, Li G, Shao W J, et al. A novel dual-channel weld seam tracking system for aircraft T-joint welds[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):751-761.
    [5] 朱志明, 马国锐, 刘晗, 等. 箱型钢结构轨道式焊接机器人D-H模型与连续轨迹规划[J]. 焊接学报, 2017, 38(12):95-98 Zhu Zhiming, Ma Guorui, Liu Han, et al. D-H model and continuous trajectory planing for orbital welding robot of box-type steel structure[J]. Transaction of the China Welding Institution, 2017, 38(12):95-98
    [6] 邱宁佳, 隋振, 李明哲, 等. 六自由度机器人空间划线轨迹规划算法[J]. 吉林大学学报:工学版, 2013, 43(5):1307-1313 Qiu Ningjia, Sui Zhen, Li Mingzhe, et al. Algorithm of 6-DOF robot trajectory planning applied to special marking[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(5):1307-1313
    [7] 李宪华, 郭永存, 张军, 等. 模块化六自由度机械臂逆运动学解算与验证[J]. 农业机械学报, 2013, 44(4):246-251 Li Xianhua, Guo Yongcun, Zhang Jun, et al. Inverse kinematics solution and verification of modular 6-DOF manipulators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4):246-251
    [8] 周友行, 张建勋, 董银松. 点焊机器人复杂轨迹逆运动学组合优化求解[J]. 焊接学报, 2010, 31(9):21-24 Zhou Youhang, Zhang Jianxun, Dong Yinsong. An optimization algorithm for combination inverse kinematics problems of welding robot in complex trajectory[J]. Transaction of the China Welding Institution, 2010, 31(9):21-24
    [9] Aristidou A, Lasenby J, Chrysanthou Y, et al. Inverse kinematics techniques in computer graphics:a survey[J]. Computer Graphics Forum, 2018, 37(6):35-58.
    [10] Chiddarwar S S, Babu N R. Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7):1083-1092.
    [11] Koker R. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization[J]. Information Sciences, 2012, 222(1):81-87.
    [12] Karkalos N E, Markopoulos A P, Dossis M F. Optimal model parameters of inverse kinematics solution of a 3R robotic manipulator using ANN models[J]. International Journal of Manufacturing, 2017, 7(3):20-40.
    [13] Frisyras E K, Moulianitis V C, Aspragathos N A. ANNs to approximate all the inverse kinematic solutions of non-cuspidal manipulators[C]//The 12th IFAC Symposium on Robot Control, Budapest, Hungary, 2018, 418-423.
    [14] 黄忠, 任福继, 胡敏. 基于RBF神经网络的人形机器人在线面部表情模仿[J]. 机器人, 2016, 38(2):225-232 Huang Zhong, Ren Fuji, Hu Min. Online facial expression imitation for humanoid robot based on RBF neural network[J]. Robot, 2016, 38(2):225-232
  • 期刊类型引用(3)

    1. 吴斌,杨敬,焦敬品,何存富,齐高君. 奥氏体不锈钢小径管焊缝缺陷多模式超声复合全聚焦成像研究. 机械工程学报. 2020(14): 9-18 . 百度学术
    2. 沈成业,洪朝,黄海军,钱盛杰,王杜. 焊缝缺陷的全聚焦相控阵成像检测. 无损检测. 2020(09): 45-49 . 百度学术
    3. 范学腾,伏喜斌,黄学斌,钟舜聪,方波,林起本,唐长明. 复合粘接结构脱粘缺陷全聚焦成像模拟及算法优化研究. 机电工程. 2019(08): 791-796 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  388
  • HTML全文浏览量:  11
  • PDF下载量:  22
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-03-21

目录

    /

    返回文章
    返回