高级检索

旁路耦合微束等离子弧增材制造自适应高度控制系统

樊丁, 李楠, 黄健康, 余淑荣, 袁文

樊丁, 李楠, 黄健康, 余淑荣, 袁文. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
引用本文: 樊丁, 李楠, 黄健康, 余淑荣, 袁文. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
FAN Ding, LI Nan, HUANG Jiankang, YU Shurong, YUAN Wen. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279
Citation: FAN Ding, LI Nan, HUANG Jiankang, YU Shurong, YUAN Wen. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 1-7. DOI: 10.12073/j.hjxb.2019400279

旁路耦合微束等离子弧增材制造自适应高度控制系统

基金项目: 国家自然科学基金项目(51665034)

Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment

  • 摘要: 在xPC Target实时目标环境下,采用旁路耦合微束等离子弧进行增材堆垛试验,探究最大临界送丝速度、焊炬悬空高度和总电压等过程参数之间的关系.通过数据分析得到了送丝速度与总电压的回归模型,进一步在xPC Target系统中创建变送丝和电压反馈相结合的自适应高度调节控制模型,搭建了基于自适应高度调节的旁路耦合微束等离子弧增材制造控制系统,进行了在台阶形基板上的堆垛成形试验和单墙体零件自适应堆垛试验.结果表明,该控制系统能提高增材制造过程的稳定性;优化堆垛高度方向上的成形路径设计;实现复杂形状基板上金属零件的堆垛成形.
    Abstract: Double electrode micro plasma arc welding was used to carry out the experiments for depositing the weld beads with the maximum deposition rate in xPC Target real-time environment, and the relationships between the process parameters such as the wire feed rate, the torch stand-off distance and the total voltage were investigated. With data analysis, the regression models of the wire feed rate and the total voltage were developed. Furthermore, a self-adaptive height adjustment control model combining the variable wire feed rate and voltage feedback in xPC Target system was created. Consequently, the double electrode micro plasma arc welding additive manufacturing control system based on the self-adaptive height adjustment was developed, and the experiments of depositing on the step shaped substrate and self-adaptive depositing the thin wall parts were carried out. The results show that the control system can improve the stability of the additive manufacturing process; optimize the deposition path design in the height direction; realize depositing the metal parts on the complex shape substrate.
  • [1] Ding D, Pan Z, Cuiuri D, et al. A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures[J]. Robotics & Computer Integrated Manufacturing, 2015, 34:8-19.
    [2] IvánTabernero, Paskual A, álvarez P, et al. Study on arc welding processes for high deposition rate additive manufacturing[J]. Procedia Cirp, 2018, 68:358-362.
    [3] Ding D, Pan Z, Van D S, et al. Fabricating superior NiAl bronze components through wire arc additive manufacturing[J]. Materials, 2016, 9(8):652-664.
    [4] Geng H, Li J, Xiong J, et al. Optimization of wire feed for GTAW based additive manufacturing[J]. Journal of Materials Processing Technology, 2017, 243:40-47.
    [5] Venturini G, Montevecchi F, Bandini F, et al. Feature based three axes computer aided manufacturing software for wire arc additive manufacturing dedicated to thin walled components[J]. Additive Manufacturing, 2018, 22:643-657.
    [6] Xiong J, Zhang G. Adaptive control of deposited height in GMAW-based layer additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(4):962-968.
    [7] Lu Y, Chen S J, Shi Y, et al. Double-electrode arc welding process:principle, variants, control and developments[J]. Journal of Manufacturing Processes, 2014, 16(1):93-108.
    [8] 黄健康, 石玗, 李妍, 等. 双熔化极旁路电弧焊控制系统控制器快速原型实现[J]. 焊接学报, 2010, 31(6):37-40 Hang Jiankang, Shi Yu, Li Yan, et al. Realization of rapid controller prototyping based on DE-GMAW control system[J]. Transactions of China Welding Institution, 2010, 31(6):37-40
    [9] Nikam S H, Jain N K. Three-dimensional thermal analysis of multi-layer metallic deposition by microplasma transferred arc process using finite element simulation[J]. Journal of Materials Processing Technology, 2017, 249:1-33.
    [10] Jhavar S, Jain N K. Development of micro-plasma wire deposition process for layered manufacturing[M]. DAAAM Ietornational Scientific Book, 2014.
    [11] Truong N V. Hardware-in-the-Loop approach to controller design and testing of motion control systems using xPC Target[C]//Proceedings of the International Conference on Intelligent and Advanced Systems. IEEE, 2012:117– 121.
  • 期刊类型引用(7)

    1. 唐天祥,史清宇,周军,张春波,梁武,周梦然,张弓,陈高强. GH4169惯性摩擦焊界面摩擦及瞬态热过程数值模拟研究. 航空制造技术. 2024(10): 36-44+52 . 百度学术
    2. 梁武,周军,张春波,张露,乌彦全,李运雷. FGH96/IN718惯性摩擦焊接头高温拉伸断裂特征. 焊接学报. 2023(09): 44-52+131-132 . 本站查看
    3. 许乔郅,张国栋,袁鸿,王金雪. FGH101高温合金惯性摩擦焊接头的显微组织与力学性能. 热加工工艺. 2023(23): 63-66+71 . 百度学术
    4. 张露,张春波,廖仲祥,乌彦全,张国栋,周军. IN718/FGH96惯性摩擦焊接头焊缝区微观组织状态与织构分布特征. 电焊机. 2022(04): 8-13 . 百度学术
    5. 张广刚,赵强,刘佳涛,白瑞祥,董红刚. 基于三维双塑性体摩擦副模型的FGH96高温合金管惯性摩擦焊数值模拟. 焊接. 2022(07): 14-20 . 百度学术
    6. 郑守峰,赵强,黄文彬,王树锋,刘佳涛,祝文卉. FGH98合金惯性摩擦焊接头显微组织与力学性能. 焊接. 2022(10): 21-26 . 百度学术
    7. 刘莹莹,李洁洁,田万涛,吴方林,谭千辉. 异种合金惯性摩擦焊的研究现状. 焊接. 2021(01): 35-41+63 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  481
  • HTML全文浏览量:  3
  • PDF下载量:  8
  • 被引次数: 11
出版历程
  • 收稿日期:  2019-01-12

目录

    /

    返回文章
    返回