Brazing process of TC4 titanium/ 304 stainless steel dissimilar materials honeycomb sandwich structure
-
摘要: 采用Ti-37.5Zr-15Cu-10Ni和Ag-28Cu两种钎料分别对TC4钛合金面板/304不锈钢蜂窝芯异种材料蜂窝结构进行了钎焊,对钎焊界面组织和蜂窝结构的力学性能进行了对比分析. 结果表明,Ti基钎料与304不锈钢蜂窝芯箔材界面润湿反应性能较差且Ti基钎料钎缝显微硬度较高,导致钎焊界面强度低,蜂窝拉伸力学性能差. Ag基钎料与304不锈钢蜂窝芯箔材和TC4面板均发生显著的界面反应,钎焊温度830 ℃,保温时间10 min时,蜂窝抗拉强度为10.35 MPa,呈蜂窝芯破坏特征. Ag基钎料蜂窝抗拉强度明显优于Ti基钎料结果,适用于TC4钛合金面板/304不锈钢蜂窝芯异种材料蜂窝钎焊.Abstract: TC4 titanium face sheet/304 stainless steel honeycomb core dissimilar materials honeycomb sandwich structures were brazed by Ti-37.5Zr-15Cu-10Ni and Ag-Cu28 brazing filler metals respectively. Microstructure of brazing interfaces and mechanical properties of honeycomb sandwich structures brazed by both brazing filler metals were comparatively analyzed in details. Results show that the wettability between 304 stainless steel honeycomb core and Ti-based brazing filler metal is poor and the hardness of brazed interface is relatively high, which lead to the low strength of Ti-37.5Zr-15Cu-10Ni brazed interface. Significant reaction has taken place between 304 stainless steel honeycomb core and Ag-based brazing filler metal. Honeycomb sandwich structure with the tensile strength of 10.35 MPa is attained at the brazing temperature of 830°C with the bolding time of 10 min. Compared with Ti-based brazing filler metal, Ag-based brazing filler metal is suitable for brazing TC4 titanium /304 stainless steel dissimilar materials honeycomb sandwich structures.
-
-
表 1 TC4钛合金/304不锈钢异质蜂窝结构钎焊工艺参数
Table 1 Brazing parameters of TC4 titanium/ 304 stainless steel dissimilar materials honeycomb sandwich structure
材料 钎焊温度T/℃ 保温时间t/min Ag-28Cu 830 10 Ti-37.5Zr-15Cu-10Ni 875 10 表 2 箔材/钎料反应区成分点能谱分析结果(原子分数,%)
Table 2 Chemical composition at different regions of the reaction zone between 304 stainless steel honeycomb core and Ag-28Cu brazing filler metal
位置 Al Ti V Cr Fe Ni Cu Ag 可能物相 A 0.15 0 0.05 0.13 0 0.02 4.973 94.683 Ag(s,s) B 0.28 30.7 0.11 1.45 13.39 4.00 46.33 3.77 Ti-Cu化合物 C 0.29 8.149 0.10 21.97 60.69 1.53 1.71 5.57 Ti-Fe化合物 D 0.20 8.23 0.09 18.33 52.00 1.52 4.20 15.42 304 + Ag(s,s) 表 3 Ag基钎料凝固区成分点能谱分析结果(原子分数,%)
Table 3 Chemical composition at different regions of Ag-Cu28 brazing filler metal solidification zone
位置 Al Ti V Cr Fe Ni Cu Ag 可能物相 F 0.09 0.08 0 0.12 0.19 0.13 6.95 92.44 Ag(s,s) G 0.43 39.39 0.51 0 0 0.62 56.37 2.68 Ti-Cu化合物 表 4 Ti基钎料凝固区成分点能谱分析结果(原子分数,%)
Table 4 Chemical composition at different regions of Ti-37.5Zr-15Cu-10Ni brazing filler metal solidification zone
位置 Al Ti V Cr Fe Ni Cu Zr 可能物相 L 1.04 29.91 0.18 0.3 1.45 13.4 15.79 37.92 钎料(s,s) M 0.48 74.18 0 0.21 0.47 2.25 4.41 17.99 Ti-Zr固溶体 表 5 TC4钛合金/304不锈钢异种材料蜂窝夹层结构拉伸强度
Table 5 Tensile strength of TC4 titanium/ 304 stainless steel dissimilar materials honeycomb sandwich structures
编号 类别 抗拉强度Rm/MPa 破坏方式 抗拉强度均值 ${\bar {R}_{\rm m} }$ /MPa1 9.74 蜂窝芯坏 10.35 2 Ag-28Cu 10.12 蜂窝芯坏 3 11.19 蜂窝芯坏 1 2.72 钎焊界面脱焊 2.59 2 Ti37.5Zr15Cu15Ni 1.95 钎焊界面脱焊 3 3.10 钎焊界面脱焊 -
[1] 岳喜山, 欧阳小龙, 侯金宝, 等. 钛合金蜂窝壁板结构钎焊工艺[J]. 航空制造技术, 2009, 10: 96 − 99. doi: 10.3969/j.issn.1671-833X.2009.04.015 Yue Xishan, Ouyang Xiaolong, Hou Jinbao, et al. Brazing process of titanium alloy honeycomb sandwich panel structure[J]. Aeronautical Manufacturing Technology, 2009, 10: 96 − 99. doi: 10.3969/j.issn.1671-833X.2009.04.015
[2] Huang X, Richards N L. Activated diffusion brazing technology for manufacture of titanium honeycomb structures- A statistical study[J]. The Welding Journal, 2004, 3: 73 − 81.
[3] 赵 丽. 钛合金蜂窝壁板制造技术研究[D]. 南京: 南京航空航天大学, 2015. [4] Richards W L, Thompson R C. Titanium honeycomb panel testing[R]. Washington D. C. NASA Technical Memorandum, 1996.
[5] 高兴强, 佀好学, 岳喜山, 等. TC4/TA18钛合金蜂窝夹层结构钎焊工艺研究[J]. 航空制造技术, 2015, 11: 109 − 112. Gao Xingqiang, Si Haoxue, Yue Xishan, et al. Brazing process of TC4/TA18 titanium alloy honeycomb sandwich construction[J]. Aeronautical Manufacturing Technology, 2015, 11: 109 − 112.
[6] 左孝靑, 周 芸, 梅 俊, 等. 不锈钢金属蜂窝的制备、组织结构及力学性能研究[J]. 粉末冶金技术, 2006, 24(5): 353 − 358. doi: 10.3321/j.issn:1001-3784.2006.05.008 Zuo Xiaoqing, Zhou Yun, Mei Jun, et al. On the fabricating, structure and compressive behaviour of stainless metallic honeycomb[J]. Power Metallurgy Technology, 2006, 24(5): 353 − 358. doi: 10.3321/j.issn:1001-3784.2006.05.008
[7] Radford D D, McShane G J, Deshpande V S, et al. Dynamic compressive response of stainless-steel square honeycombs[J]. Transactions of the ASME, 2007, 74: 658 − 667. doi: 10.1115/1.2424717
[8] Fang Y J, Jiang X S, Song T F, et al. Pulsed laser welding of Ti-6Al-4V titanium alloy to AISI 316L stainless steel using Cu/Nb bilayer[J]. Materials Letters, 2019, 244: 163 − 166. doi: 10.1016/j.matlet.2019.02.075
[9] Liu X, Huang X M, Ma H B, et al. Microstructure and properties of the joints of ZrO2 ceramic/stainless steel brazed in vacuum with AgCuTi active filler metal[J]. China Wedling, 2018, 27(2): 52 − 56.
[10] 秦 斌, 盛光敏, 黄家伟, 等. 钛合金与不锈钢的相变超塑性扩散焊工艺[J]. 焊接学报, 2006, 28(1): 48 − 52. doi: 10.3321/j.issn:0253-360X.2006.01.011 Qin Bin, Sheng Guangmin, Huang Jiawei, et al. Phase transformation diffusion bonding technology for titanum alloy to stainless steel[J]. Transactions of the China Welding Institution, 2006, 28(1): 48 − 52. doi: 10.3321/j.issn:0253-360X.2006.01.011
[11] 孙荣禄, 张九海. 钛及钛合金与钢焊接的问题及研究现状[J]. 宇航材料工艺, 1997(2): 7 − 11. Shen Ronglu, Zhang Jiuhai. Research status on the welding technology of titanium alloy to stainless steel[J]. Aerospace Materials and Technology, 1997(2): 7 − 11.
[12] Yu Xiao, Yang Jin, Yan Ming, et al. Kinetics of wetting and spreading of AgCu filler metal over Ti6Al4V substrates[J]. Journal of Materials Science, 2016, 51(24): 10960 − 10969.
[13] 刘士磊. 非晶钎料真空钎焊TC4钛合金及不锈钢的研究[D]. 郑州: 郑州大学, 2017. [14] He P, Liu D. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials[J]. Materials Science and Engineering A, 2006, 437(2): 430 − 435. doi: 10.1016/j.msea.2006.08.019
[15] Ahmed E, Wolfgang T. Correlation between microstructure, mechanical properties, and brazing temperature of steel to titanium joint[J]. Journal of Alloys and Compounds, 2009, 487(1-2): 639 − 645. doi: 10.1016/j.jallcom.2009.08.029
[16] 吴铭方, 杨 敏, 张 超, 等. Ti/Cu共晶反应液相铺展及组织[J]. 焊接学报, 2005, 26(10): 68 − 72. doi: 10.3321/j.issn:0253-360X.2005.10.018 Wu Mingfang, Yang Min, Zhang Chao, et al. Liquid spreading and microstructure of Ti/Cu eutectic reaction[J]. Transactions of the China Welding Institution, 2005, 26(10): 68 − 72. doi: 10.3321/j.issn:0253-360X.2005.10.018
[17] Chang T, Kim J, Bang J, et al. Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals[J]. Transactions of Nonferrous Metal Society of China, 2012, 22: 639 − 644. doi: 10.1016/S1003-6326(12)61778-6
-
期刊类型引用(11)
1. 侯怀书,余晓东,赵志繁,焦超飞. 304L奥氏体不锈钢焊管退火温度涡流检测技术研究. 热加工工艺. 2025(04): 59-63 . 百度学术
2. 韩文倩,董红刚,马月婷,李鹏,吴宝生,张亮亮. Ti_(43.76)Zr_(12.50)Cu_(37.49-x_Ni_(6.25)Co_x非晶钎料真空钎焊TC4钛合金/316L不锈钢. 焊接学报. 2024(01): 47-57+132 . 本站查看
3. 李佳旺,赵东杰,陈翠欣,郭卫兵,刘宝玺. 铝/不锈钢蜂窝复合结构的设计制备与压缩性能. 河北工业大学学报. 2024(02): 36-41 . 百度学术
4. 文彦臻,邓云华,贾震. 气凝胶填充金属蜂窝夹层结构隔热性能试验与模拟. 中国机械工程. 2023(05): 556-562 . 百度学术
5. 戎万,操齐高,郑晶,汪小钰,贾志华,孟晗琪. 钯含量对银铜钯合金箔带钎料性能的影响. 广东化工. 2023(24): 41-43 . 百度学术
6. 马平义,祖清明,陈旭,周贤军,黄裕乾,石文展,彭赫力. 钎焊压力对GH4099蜂窝夹层结构焊接质量影响研究. 模具技术. 2023(06): 34-42 . 百度学术
7. 庄明祥,赵安安,王浩军,李善良,龙健,张林杰. TC4钛合金电子束焊接头低周疲劳性能与断裂行为. 焊接. 2022(02): 39-45+55 . 百度学术
8. 王喆,肖明颖,高华兵,董涛,李海新,杨振林,果春焕,姜风春. 钛合金/钢异种连接接头组织与性能研究进展. 材料工程. 2022(05): 11-19 . 百度学术
9. 翟秋亚,刘帅宾,田甜,徐锦锋,叶建林. 基于焊缝高熵化的TA2与0Cr18Ni9板材TIG焊分析. 焊接学报. 2021(04): 79-83+101 . 本站查看
10. 王钰,王凯,罗子艺,卢清华,杨景卫. 大功率激光焊接工艺对304不锈钢焊接接头组织和电化学行为的影响. 焊接. 2020(03): 17-23+65-66 . 百度学术
11. 张冠星,张雷,沈元勋,董宏伟. 感应钎焊工艺对钎缝组织和性能的影响. 焊接. 2020(07): 30-34+41+62 . 百度学术
其他类型引用(3)